Absolute Root Separation

Bruno Salvy

AriC, Inria at ENS de Lyon

Journées GDR EFI, June 2021

Joint work with Yann Bugeaud, Andrej Dujella, Wenjie Fang and Tomislav Pejković

AMM, 2017
arXiv:1606.01131

Exp. Maths., 2019
arXiv:1907.01232
Close Roots of Polynomials

\[P \in \mathbb{Z}[X] \quad P(\alpha) = P(\beta) = 0 \]

\[P = 5X^3 - 8X^2 - 9X + 2 \]
\[\beta - \alpha \simeq 10^{-2} \]

\[P = 7X^3 + 5X^2 + 5X + 1 \]
\[\Re\beta - \Re\alpha \simeq 6 \cdot 10^{-4} \]

\[P = 10X^3 - 3X^2 - 2X + 3 \]
\[|\beta| - |\alpha| \simeq 5 \cdot 10^{-4} \]

\[P = 10x^4 + x^3 + 10 \]
\[\Im\beta - \Im\alpha \simeq 6 \cdot 10^{-5} \]

Aim: Bound precision needed to decide that two roots have identical value/real part/imaginary part/absolute value?
Mahler’s Bound

Def. Separation

\[
\text{sep}(P) := \min_{P(\alpha) = P(\beta) = 0, \alpha \neq \beta} |\alpha - \beta|.
\]

Def. Height

\[
H\left(\sum_{i=0}^{d} a_i X^i\right) := \max_{i} |a_i|.
\]

Thm. If \(P \in \mathbb{Z}[X] \) has degree \(d \),

\[
\text{sep}(P) > \kappa(d) H(P)^{-d+1}.
\]

Explicit function of \(d \) not known to be tight (except for \(d = 3 \)) worst known family gives \(-(2d - 1)/3\).

[Mahler 64; Evertse 04; BugeaudDujella 14]
Definition: Absolute Separation

\[
\text{abssep}(P) := \min_{P(\alpha) = P(\beta) = 0, |\alpha| \neq |\beta|} \left| |\alpha| - |\beta| \right|.
\]

Aims:

1. \(\text{abssep}(P) > \kappa(d)H(P)^{-e(d)}\) with \(e(d)\) small;

2. families for small \(d\) with \(\text{abssep}(P_H) \sim \kappa' H^{-e'}\) and \(e'(\leq e)\) large.

Note: Isolating disks of radius \(\varepsilon\) for all roots can be computed in time \(\tilde{O}(d^3 + d^2 \log H(P) - d \log \varepsilon)\).

Motivation: asymptotics of linear recurrences & diagonals

\(e(d) \ll d^3\) would be nice
Results

Previously
\[
e(d) \leq d(d^2 + 2d - 1)/2 \quad 1996
\]
\[
e(d) \leq d^3/2 - d^2 - d/2 + 2 \quad 2015
\]
\[
e(d) \leq d^3/2 - d^2 - d/2 + 1 \quad (d \geq 4) \quad 2019
\]

New: \(e(3) = 4, \ 5 \leq e(4) \leq 12, \ 6 \leq e(5) \leq 24, \ 7 \leq e(6) \leq 30, \)
\[
e(d) \leq (d - 1)(d - 2)(d - 3)/2 = d^3/2 - 3d^2 + \cdots \quad (d \geq 6).
\]

+ more precise bounds when one or two of the roots are real (→ 12, 24)
+ bounds on the separation between real/imaginary parts

[GourdonSalvy 96; DubickasSha 15; Sha 19]
II. Proof Technique for Upper Bounds
Auxiliary Polynomials

From \(P(X) = \sum_{i=0}^{d} a_i X^i = a_d \prod_{i=1}^{d} (X - \alpha_i) \in \mathbb{Z}[X] \) of height \(H(P) \)

construct

\[
M(X) = a_d^{2(d-1)} \prod_{i<j} (X - (\alpha_i - \alpha_j)^2) \in \mathbb{Z}[X]
\]

and lower bound its nonzero roots.

Prop. 1 [Cauchy] If \(\alpha \neq 0 \),

\[
P(\alpha) = 0 \Rightarrow |\alpha| \geq \frac{1}{1 + H(P)}.
\]

Prop. 2 [Symmetric fcns] \(G \in \mathbb{Z}[X_1, \ldots, X_d] \) symmetric with \(\text{deg}_{X_i} G \leq k \) for all \(i \)

\[
\Rightarrow a_d^k G(\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}[a_0, \ldots, a_d] \text{ of total degree } \leq k.
\]

Application to \(M \rightarrow |\alpha_i - \alpha_j|^2 > \kappa H^{-(d-1)} \).
A Bigger Polynomial

\[a_d^{(d-1)(d-2)(d-3)} \prod_{i < j, \ k < \ell, \ \{i, j\} \cap \{k, \ell\} = \emptyset} \left(X^{1/2} - (\alpha_i \alpha_j - \alpha_k \alpha_\ell) \right) \]

\[\Rightarrow \left(|\alpha|^2 - |\beta|^2 \right)^2 \gg H^{-(d-1)(d-2)(d-3)} \]

gives exponent \((d - 1)(d - 2)(d - 3)/2 \) for the general case.
More Auxiliary Polynomials

\[a_d^{2(d-1)} \prod_{i<j} (X - (\alpha_i + \alpha_j)^2) \]

\[a_d^{2(d-1)(d-2)} \prod_{i<j,k \notin \{i,j\}} (X - (\alpha_k^2 - \alpha_i \alpha_j)) \]

\[\alpha_j, \alpha_k \text{ real} \Rightarrow \left| |\alpha_j| - |\alpha_k| \right| > \kappa H^{-(d-1)} \]

\[\alpha_k \text{ real} \Rightarrow \left| |\alpha_j| - |\alpha_k| \right| > \kappa H^{-2(d-1)(d-2)} \]
Variants ($\times \mapsto +$)

$$a_d \frac{3}{2} (d-1)(d-2) \prod_{i<j,k \notin \{i,j\}} \left(X - (\alpha_i + \alpha_j - 2\alpha_k) \right)$$

$$\alpha_k \text{ real } \Rightarrow \left| \alpha_k - \Re \alpha_i \right| > \kappa H^{-(d-1)(d-2)/2}$$

$$a_d (d-1)(d-2)(d-3) \prod_{i<j,\ k<\ell,\ \{i,j\} \cap \{k,\ell\} = \emptyset} \left(X^{1/2} - (\alpha_i + \alpha_j - \alpha_k - \alpha_\ell) \right)$$

$$\left| \Re \alpha_k - \Re \alpha_i \right| > \kappa H^{-(d-1)(d-2)(d-3)/2}$$

and similarly for imaginary parts.
III. Experiments in Low Degree
Exhaustive Search

1. Solve the \((2H + 1)^{d+1}\) pols in \(\mathbb{Z}[X]_{\leq d}\) with height \(\leq H\)
 and keep the records.

Ex.: \(d = 3, \ H = 20 \rightarrow \text{approx. } 300,000\) polynomials. (15 min.)
\(d = 4, \ H = 20 \rightarrow \text{approx. } 115 \times 10^6\) polynomials. (19 h)

2. Refine the search in the neighborhood of those; look for patterns

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>abs sep</th>
<th>Real root</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17x^3 + 9x^2 + 7x + 8)</td>
<td>(1.9 \times 10^{-5})</td>
<td>(-0.7778352845)</td>
</tr>
<tr>
<td>(102x^3 + 97x^2 + 71x + 40)</td>
<td>(1.5 \times 10^{-8})</td>
<td>(-0.7319587393)</td>
</tr>
<tr>
<td>(153x^3 - 97x^2 - 71x + 60)</td>
<td>(4.5 \times 10^{-9})</td>
<td>(-0.7319587525)</td>
</tr>
<tr>
<td>(181x^3 + 153x^2 + 112x + 71)</td>
<td>(9.0 \times 10^{-10})</td>
<td>(-0.7320261422)</td>
</tr>
</tbody>
</table>

\(\approx 1 - \sqrt{3}\)
Degree 3: Optimal Exponent -4

Key polynomial:

\[P(X, Y) = X^3 - X^2 + 1 + \left(\frac{X^3}{2} - \frac{X^2}{3} + \frac{2}{3} X + 1 \right) Y \]

\[P(X, \sqrt{3}) = \frac{\sqrt{3} + 2}{6} \left(X - \sqrt{3} + 1 \right) \left(X^2 + aX + (\sqrt{3} - 1)^2 \right), \quad a < 2(\sqrt{3} - 1). \]

Perturbation:

\[P(X, \sqrt{3} + \epsilon) \] has a real root at \(\sqrt{3} - 1 + (2 - \sqrt{3})\epsilon + O(\epsilon^2) \)

and a nonreal one with similar modulus, but a different \(O() \) term.

If \(p_n/q_n \) is the \(n \)th convergent of the continued fraction of \(\sqrt{3} \),

\[P_n(X) := 6q_n P(X, p_n/q_n) \in \mathbb{Z}[X], \quad \text{abssep}(P_n) < \kappa H(P_n)^{-4}. \]

Proof: \(|p_n/q_n - \sqrt{3}| < 1/q_n^2 \).
Perturbative Method (4 ≤ \text{deg} ≤ 6)

Principle

\[P(X, \epsilon) = R(X) + \epsilon Q(X) \]

with roots of identical \(|.| \)

with undeterminate coefficients

1. Pick two nonconjugate roots \(\alpha, \beta \) of \(R \)

2. Compute expansions \(\alpha(\epsilon), \beta(\epsilon) \) of roots of \(P \)
 with \(\alpha(0) = \alpha, \beta(0) = \beta \)
 in \(\mathbb{Q}(\alpha)[q_0, \ldots, q_d][[\epsilon]] \)
 (or \(\beta \))

3. Form the expansion of \(|\alpha(\epsilon)|^2 - |\beta(\epsilon)|^2 \)
 in \(\mathbb{Q}(\alpha, \beta)[q_0, \ldots, q_d][[\epsilon]] \)

4. Look for a nondegenerate \textbf{integer} solution of the system
 formed by its first coefficients
Results

<table>
<thead>
<tr>
<th>deg</th>
<th>R</th>
<th>Q</th>
<th>exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$x^4 - 1$</td>
<td>$x^3 - x^2 + x - 5$</td>
<td>-5</td>
</tr>
<tr>
<td>4</td>
<td>$(x^2 - 1)(x^2 + x + 1)$</td>
<td>$x^3 - 3x - 4$</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>$x^6 - 1$</td>
<td>$9x^5 - 9x^4 - 26x^3 - 9x^2 + 9x - 28$</td>
<td>-7</td>
</tr>
<tr>
<td>5</td>
<td>$(x^2 + ax + r^2)(x^2 + bx + r^2)$</td>
<td>$</td>
<td>a</td>
</tr>
</tbody>
</table>

Loop over small values of a, b, r gives:

$a = -9, b = -11, r = 6, Q = X^5 - 213X^3 + 2404X^2 - 11088X + 20736$

exponent -6
Conclusion: New ideas needed

- to find polynomials with small absolute separation in low degree;
- to generalize the key polynomial of degree 3;
- to produce (or disprove the existence of) subcubic exponents;
- to obtain better bounds for the dominant roots?

The End