Absolute Root Separation Bruno Salvy AriC, Inria at ENS de Lyon 0.5 AMM, 2017 -0.4 -0.2 0.2 0.4 0.6 arXiv:1606.01131 -0.5 Exp. Maths., 2019 arXiv:1907.01232

Journées GDR EFI, June 2021

Joint work with Yann Bugeaud, Andrej Dujella, Wenjie Fang and Tomislav Pejković

Close Roots of Polynomials

X---

α

-0.6 -0.4 -0.2

-2

$$P \in \mathbb{Z}[X] \qquad P(\alpha) = P(\beta) = 0$$

$$P = 7X^{3} + 5X^{2} + 5X + 1$$

$$P = 5X^{3} - 8X^{2} - 9X + 2$$

$$\beta - \alpha \simeq 10^{-2}$$

$$P = 10X^{3} - 3X^{2} - 2X + 3$$

$$|\beta| - |\alpha| \simeq 5 \cdot 10^{-4}$$

$$\int_{0.5}^{0.5} P = 7X^{3} + 5X^{2} + 5X + 1$$

$$\Re\beta - \Re\alpha \simeq 6 \cdot 10^{-4}$$

$$R\beta - \Re\alpha \simeq 6 \cdot 10^{-5}$$

Mahler's Bound

[Mahler 64; Evertse 04; BugeaudDujella 14]

2. families for small d with $absen(P_{i}) \rightarrow r' H^{-e'}$ and a' (r' e) large

 $\operatorname{abssep}(P_H) \sim \kappa' H^{-e'} \text{ and } e' (\leq e) \text{ large }.$

Note: Isolating disks of radius ε for all roots can be computed in time $\tilde{O}(d^3 + d^2 \log H(P) - d \log \varepsilon)$.

 $\leq e$) large. $e(d) \ll d^3$ would be nice

Results

Previously
$$e(d) \le d(d^2 + 2d - 1)/2$$
 1996

$$e(d) \le d^3/2 - d^2 - d/2 + 2$$
 2015

$$e(d) \le d^3/2 - d^2 - d/2 + 1 \quad (d \ge 4) \qquad 2019$$

New:
$$e(3) = 4$$
, $5 \le e(4) \le 12$, $6 \le e(5) \le 24$, $7 \le e(6) \le 30$,
 $e(d) \le (d-1)(d-2)(d-3)/2 = d^3/2 - 3d^2 + \cdots \quad (d \ge 6)$.

+ more precise bounds when one or two of the roots are real (\rightarrow 12,24) + bounds on the separation between real/imaginary parts

[GourdonSalvy 96; DubickasSha 15; Sha 19]

II. Proof Technique for Upper Bounds

Auxiliary Polynomials

From
$$P(X) = \sum_{i=0}^{d} a_i X^i = a_d \prod_{i=1}^{d} (X - \alpha_i) \in \mathbb{Z}[X]$$
 of height $H(P)$
construct
 $M(X) = a_d^{2(d-1)} \prod_{i < j} (X - (\alpha_i - \alpha_j)^2) \in \mathbb{Z}[X]$ and lower bound
its nonzero roots.
Prop. 1 [Cauchy] If $\alpha \neq 0$,
 $P(\alpha) = 0 \Rightarrow |\alpha| \ge \frac{1}{1 + H(P)}$.
Prop. 2 [Symmetric fcns]
 $G \in \mathbb{Z}[X_1, ..., X_d]$ symmetric
with $\deg_{X_i} G \le k$ for all i
 $\Rightarrow a_d^k G(\alpha_1, ..., \alpha_d) \in \mathbb{Z}[a_0, ..., a_d]$

of total degree $\leq k$.

Application to
$$M \to |\alpha_i - \alpha_j|^2 > \kappa H^{-2(d-1)}$$
.

Recovers Mahler's exponent

5/13

gives exponent (d-1)(d-2)(d-3)/2 for the general case

More Auxiliary Polynomials

$$a_d^{2(d-1)} \prod_{i < j} (X - (\alpha_i + \alpha_j)^2)$$

$$\alpha_j, \alpha_k \text{ real} \Rightarrow \left| |\alpha_j| - |\alpha_k| \right| > \kappa H^{-(d-1)}$$

optimal

$$a_d^{2(d-1)(d-2)} \prod_{i < j, k \notin \{i, j\}} (X - (\alpha_k^2 - \alpha_i \alpha_j))$$

$$\alpha_k \operatorname{real} \Rightarrow \left| |\alpha_j| - |\alpha_k| \right| > \kappa H^{-2(d-1)(d-2)}$$

Variants (×++)

$$\begin{aligned} a_{d}^{\frac{3}{2}(d-1)(d-2)} \prod_{i < j, k \notin \{i, j\}} \left(X - (\alpha_{i} + \alpha_{j} - 2\alpha_{k}) \right) & & \alpha_{k} \\ \alpha_{k} \text{ real} \Rightarrow \left| \alpha_{k} - \Re \alpha_{i} \right| > \kappa H^{-3(d-1)(d-2)/2} & & \\ a_{d}^{(d-1)(d-2)(d-3)} \prod_{i < j,} \left(X^{1/2} - (\alpha_{i} + \alpha_{j} - \alpha_{k} - \alpha_{\ell}) \right) & & \\ k < \ell, \\ \{i, j\} \cap \{k, \ell\} = \emptyset & & \left| \Re \alpha_{k} - \Re \alpha_{i} \right| > \kappa H^{-(d-1)(d-2)(d-3)/2} \end{aligned}$$

and similarly for imaginary parts.

 $\beta \dot{k}$

+0.5

III. Experiments in Low Degree

Exhaustive Search

1. Solve the $(2H + 1)^{d+1}$ pols in $\mathbb{Z}[X]_{\leq d}$ with height $\leq H$ and keep the records.

Ex.: $d = 3, H = 20 \rightarrow \text{approx. } 300,000 \text{ polynomials. } (15 \text{ min.})$ $d = 4, H = 20 \rightarrow \text{approx. } 115 \ 10^6 \text{ polynomials. } (19 \text{ h})$

2. Refine the search in the neighborhood of those; look for patterns

	abssep	real root	
$17x^3 + 9x^2 + 7x + 8$	1.910^{-5}	-0.7778352845	
$102 x^3 + 97 x^2 + 71 x + 40$	$1.5 \ 10^{-8}$	-0.7319587393	
$153 x^3 - 97 x^2 - 71 x + 60$	4.5 10 ⁻⁹	-0.7319587525	
$181 x^3 + 153 x^2 + 112 x + 71$	9.0 10 ⁻¹⁰	-0.7320261422	
		$\approx 1 - \sqrt{3?}$	9/13

Degree 3: Optimal Exponent -4

Key polynomial:

$$P(X, Y) = X^{3} - X^{2} + 1 + \left(\frac{X^{3}}{2} - \frac{X^{2}}{3} + \frac{2}{3}X + 1\right)Y$$

$$Guessed from numerical coefficients$$

$$P(X, \sqrt{3}) = \frac{\sqrt{3} + 2}{6} \left(X - \sqrt{3} + 1\right) \left(X^{2} + aX + (\sqrt{3} - 1)^{2}\right), \quad a < 2(\sqrt{3} - 1)$$

$$Perturbation:$$

$$P(X, \sqrt{3} + \epsilon) \text{ has a real root at } \sqrt{3} - 1 + (2 - \sqrt{3})\epsilon + O(\epsilon^{2})$$
and a nonreal one with similar modulus, but a different O() term.

If p_n/q_n is the *n*th convergent of the continued fraction of $\sqrt{3}$, $P_n(X) := 6q_n P(X, p_n/q_n) \in \mathbb{Z}[X]$, abssep $(P_n) < \kappa H(P_n)^{-4}$.

 $\sqrt{3} = 1 + \frac{1}{1 +$

10/13

Proof:
$$|p_n/q_n - \sqrt{3}| < 1/q_n^2$$
.

- 1. Pick two nonconjugate roots α , β of R
- 2. Compute expansions $\alpha(\epsilon)$, $\beta(\epsilon)$ of roots of $P_{in \ \mathbb{Q}(\alpha)[q_0, ..., q_d][[\epsilon]]}$ with $\alpha(0) = \alpha$, $\beta(0) = \beta_{(or \ \beta)}$
- 3. Form the expansion of $|\alpha(\epsilon)|^2 |\beta(\epsilon)|^2$ in $\mathbb{Q}(\alpha,\beta)[q_0,...,q_d][[\epsilon]]$
- 4. Look for a nondegenerate integer solution of the system formed by its first coefficients

Results

Loop over small values of *a*, *b*, *r* gives:

 $a = -9, b = -11, r = 6, Q = X^5 - 213X^3 + 2404X^2 - 11088X + 20736$ exponent -6

Conclusion: New ideas needed

- . to find polynomials with small absolute separation in low degree;
- . to generalize the key polynomial of degree 3;
- . to produce (or disprove the existence of) subcubic exponents;
- . to obtain better bounds for the dominant roots?

Conway's sequence