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Differential Galois theory

F = K(x), K algebraically closed and char(K) = 0

key case: K = C
derivation ∂ = d/dx on F , with field of constants K

Differential equation: ∂(y) = Ay with A ∈ Fn×n

 find complete set of solutions y1, . . . , yn such that E := F (y1, . . . , yn) has no new
constants (e.g. y1, . . . , yn ∈ K[[x− α]]n for a suitable α ∈ K)

 E is unique up to isomorphism and is called Picard-Vessiot extension

 Differential Galois group: G := Aut∂(E/F ) ↪→ GLn(K)

Fact: G is a linear algebraic group over K

Example: n = 1, ∂(y) = y
E = F (ex) ⊂ K((x))

automorphism γ : E → E, ex 7→ cex, c ∈ K

G = GL1
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The inverse differential Galois problem

The inverse differential Galois problem

Which linear algebraic groups over K are differential Galois groups over K(x)?

Answer: All groups occur!

I proved for K = C in 1979 by Tretkoff/Tretkoff using analytic methods

I proved for arbitrary algebraically closed fields K in a series of papers by
Kovacic (1969),..., Mitschi-Singer (1996),..., Hartmann (2002).
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Generalizations of the inverse problem

1. Given a linear algebraic group G, in how many essentially different ways does it
occur as a differential Galois group? Define
κG := cardinality of isomorphism classes of extensions with group G.
Is κG = |K|? (known for connected solvable groups (Kovacic, 1969)).

2. Instead of only realizing a given group, can we realize a given surjective
morphism? I.e., can we solve all differential embedding problems over K(x)?
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Differential embedding problems

Differential embedding problem:

Given π : G � H and L/F Picard-Vessiot extension with differential Galois group H,
is there a Picard-Vessiot extension E/F with differential Galois group G such that E
contains L (compatibly with π)?

In other words, can we construct Picard-Vessiot extensions compatibly in towers?

Example:

π : G = {
(
a b
0 a−1

)
| a, b ∈ K, a 6= 0}� GL1,

(
a b
0 a−1

)
7→ a,

L = F (ex) with F = K(x) as before.

 Consider ∂(y) =

(
1 1

x+1

0 −1

)
y. Complete set of solutions:

y1 =

(
ex

0

)
, y2 =

(
g
e−x

)
,

where we fixed a g ∈ K[[x]] with ∂(g) = 1
x+1

e−2x.
Picard-Vessiot extension E = F (ex, g) with differential Galois group G and restriction
Aut∂(E/F )� Aut∂(L/F ) corresponds to π.
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Picard-Vessiot extensions of infinite type

Let
∂(y) = Aiy, i ∈ I

be a family of differential equations over F = K(x). A differential field extension E/F
is called Picard-Vessiot extension of infinite type for this family, if

I for every i ∈ I, there exists a complete set of solutions of ∂(y) = Aiy with entries
in E

I E is generated as a field extensions by the entries of all these solutions

I E has no new constants

 such an extension E always exists and it is unique up to isomorphism

 The differential Galois group of E/F is again defined as G = Aut∂(E/F )

Fact: G is a proalgebraic group over K, i.e., it is an inverse limit lim←−Gi of linear
algebraic groups over K, or, equivalently, an affine group scheme over K.
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The absolute differential Galois group

Consider a maximal no-new-constants extension Ẽ over F = K(x) of differential fields
(exists by Zorn’s lemma). Define

F̃ =
⋃

E⊆Ẽ,E/F is a Picard-Vessiot extension

E

Then F̃ is the Picard-Vessiot extension (of infinite type) of the family of all linear
differential equations over F . Its Galois group is called the absolute differential Galois
group of F :

G(F̃ /F ) = Aut∂(F̃ /F )

Note: Aut∂(F̃ /F ) = lim←−E⊆Ẽ Aut∂(E/F ) is a proalgebraic group
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E⊆Ẽ,E/F is a Picard-Vessiot extension

E

Then F̃ is the Picard-Vessiot extension (of infinite type) of the family of all linear
differential equations over F . Its Galois group is called the absolute differential Galois
group of F :

G(F̃ /F ) = Aut∂(F̃ /F )
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(exists by Zorn’s lemma). Define

F̃ =
⋃
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Generalizations of the inverse problem

1. Given a linear algebraic group G, in how many essentially different ways does it
occur as a differential Galois group? Define
κG := cardinality of isomorphism classes of extensions with group G
Is κG = |K|? (known for connected solvable groups (Kovacic, 1969)).

2. Instead of only realizing a given group, can we realize a given surjective
morphism? I.e., can we solve all differential embedding problems over K(x)?

3. Combining these questions: how many essentially different solutions does a given
differential embedding problem have?

4. Instead of only asking which algebraic groups occur as Galois groups one can ask
which proalgebraic groups occur: Is every proalgebraic group with rank(G) ≤ |K|
the differential Galois group of some Picard-Vessiot extension (of infinite type)?

5. Combine 2 and 4: Given proalgebraic groups π : G� H and L/F Picard-Vessiot
extension (of infinite type) with differential Galois group H, is there a solution to
this differential embedding problem if we assume rank(G) ≤ |K| and
rank(H) < |K|?
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Our result

Theorem (B., Harbater, Hartmann, Wibmer, 2020)

Let K be an algebraically closed field of characteristic zero and infinite transcendence
degree over Q.

I Then we can give affirmative answers to all these five generalizations of the
inverse differential Galois problem.

I Moreover, we show that absolute differential Galois group of K(x) is free of
rank |K|.
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Matzat’s conjecture

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute
differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for K of infinite transcendence degree.

The conjecture was inspired by

Theorem (Geometric Shafarevich conjecture)

Let K be an algebraically closed field. Then the absolute Galois group of K(x) is free
of rank |K|.

Solved in 1964 by Douady for the case char(K) = 0 and for general K in 1995 by
Harbater and Pop.
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Proof of Matzat’s conjecture

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute
differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for K of infinite transcendence degree.

Proposition

Matzat’s conjecture holds if and only

(i) every differential embedding problem (G� H,L) over K(x) with G, H of finite
type has a solution and

(ii) every split admissible differential embedding problem over F has a solution.

Here, a differential embedding problem (G� H,L) with proalgebraic groups G,H and
L/K(x) a Picard-Vessiot extension (of infinite type) with Galois group H is called

I admissible, if rank(H) < |K| and N = ker(G� H) is of finite type

I split, if G� H splits, i.e. G = N oH
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Solving a special case over K(x)

Consider F = K(x) with K algebraically closed of infinite transcendence degree. Let
G = N oH be an algebraic group and let L/F be a Picard-Vessiot extension with
Galois group H.

Previous result (joint with David Harbater, Julia Hartmann and Florian Pop): Even in
the more general situation of large fields K of infinite transcendence degree, such an
embedding problem can be solved.
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Large fields

Definition

A field K is large if for every smooth K-curve C with C(K) 6= ∅ there are infinitely
many K-points: |C(K)| =∞.

Example:

I PAC fields, in particular algebraically closed fields

I K complete wrt non-trivial absolute value, e.g. R, Qp, k((t))

I fraction fields of domains that are Henselian wrt non-trivial ideal, e.g.
K = k((t1, . . . , tn)), Puiseaux series fields,...
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From algebraic groups to proalgebraic groups

Consider F = K(x). Let G = N oH be a proalgebraic group over K and L/F a
Picard-Vessiot extension with Galois group H such that the embedding problem
(N oH, L) is admissible, in particular, N is of finite type.

Goal: Find a Picard-Vessiot extension E/F with Galois group G and E ⊇ L
compatibly with G� H.

Write H = lim←−i∈I Hi with Hi = H/Ui of finite type and L = lim−→i∈I
Li with Li/F

Picard-Vessiot with Galois group Hi. We would like to write “G = lim←−i∈I(N oHi)”.

Use that N is of finite type  Ui acts trivially on N “for sufficiently many i ∈ I”, i.e.,
∃J ⊆ I s.t. Uj acts trivially on N for every j ∈ J and

⋂
j∈J

Uj = 1.

Then H = lim←−j∈J Hj , G = lim←−j∈J N oHj and L = lim−→j∈J
Lj . Hence for each j,

(N oHj , Lj) defines a differential embedding problem (of finite type) and we can
obtain solutions Ej for every j.

 show that these solutions are compatible, i.e., lim−→j∈J
Ej yields a solution to the

given differential embedding problem (N oH,L).
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Free proalgebraic groups

Free proalgebraic groups

Let X be a set. A proalgebraic group Γ together with a map ι : X → Γ(K̄) such that
“ι converges to 1” is called the free proalgebraic group on X if for all other such pairs
(Γ′, ι′) there exists a unique morphism ψ : Γ→ Γ′ such that

X
ι //

ι′ ��

Γ(K̄)

ψK̄��
Γ′(K̄)

commutes.
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