The differential Galois group of the rational function field

Annette Bachmayr (joint work with David Harbater, Julia Hartmann, Michael Wibmer)

May 2021

 $F=K(x),\ K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial=d/dx$ on F, with field of constants K

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $\rightsquigarrow E$ is unique up to isomorphism and is called Picard-Vessiot extension

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $\leadsto E$ is unique up to isomorphism and is called Picard-Vessiot extension

 \rightsquigarrow Differential Galois group: $G := \operatorname{Aut}^{\partial}(E/F)$

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $\leadsto E$ is unique up to isomorphism and is called Picard-Vessiot extension

 \rightsquigarrow Differential Galois group: $G := \operatorname{Aut}^{\partial}(E/F) \hookrightarrow \operatorname{GL}_n(K)$

Fact: G is a linear algebraic group over K

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $\leadsto E$ is unique up to isomorphism and is called Picard-Vessiot extension

 \rightsquigarrow Differential Galois group: $G := \operatorname{Aut}^{\partial}(E/F) \hookrightarrow \operatorname{GL}_n(K)$

Fact: G is a linear algebraic group over K

Example: n = 1, $\partial(y) = y$ $E = F(e^x) \subset K((x))$

 $F=K(x),\,K$ algebraically closed and ${\rm char}(K)=0$ key case: $K=\mathbb{C}$

derivation $\partial = d/dx$ on F, with field of constants K

Differential equation: $\partial(y) = Ay$ with $A \in F^{n \times n}$

 \rightsquigarrow find complete set of solutions y_1, \ldots, y_n such that $E := F(y_1, \ldots, y_n)$ has no new constants (e.g. $y_1, \ldots, y_n \in K[[x - \alpha]]^n$ for a suitable $\alpha \in K$)

 $\leadsto E$ is unique up to isomorphism and is called Picard-Vessiot extension

 \rightsquigarrow Differential Galois group: $G := \operatorname{Aut}^{\partial}(E/F) \hookrightarrow \operatorname{GL}_n(K)$

Fact: G is a linear algebraic group over K

Example: n = 1, $\partial(y) = y$ $E = F(e^x) \subset K((x))$ automorphism $\gamma: E \to E, e^x \mapsto ce^x, c \in K$

$$G = GL_1$$

The inverse differential Galois problem

Which linear algebraic groups over K are differential Galois groups over K(x)?

The inverse differential Galois problem

Which linear algebraic groups over K are differential Galois groups over K(x)?

Answer: All groups occur!

- ▶ proved for $K = \mathbb{C}$ in 1979 by Tretkoff/Tretkoff using analytic methods
- proved for arbitrary algebraically closed fields K in a series of papers by Kovacic (1969),..., Mitschi-Singer (1996),..., Hartmann (2002).

1. Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group?

 Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G.
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G.
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism?

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G.
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?

Differential embedding problem:

Given $\pi: G \to H$ and L/F Picard-Vessiot extension with differential Galois group H, is there a Picard-Vessiot extension E/F with differential Galois group G such that E contains L (compatibly with π)?

In other words, can we construct Picard-Vessiot extensions compatibly in towers?

Differential embedding problem:

Given $\pi: G \to H$ and L/F Picard-Vessiot extension with differential Galois group H, is there a Picard-Vessiot extension E/F with differential Galois group G such that E contains L (compatibly with π)?

In other words, can we construct Picard-Vessiot extensions compatibly in towers?

Example:

$$\begin{aligned} \pi \colon G &= \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in K, a \neq 0 \} \twoheadrightarrow \operatorname{GL}_1, \ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mapsto a \\ L &= F(e^x) \text{ with } F = K(x) \text{ as before.} \end{aligned}$$

Differential embedding problem:

Given $\pi: G \to H$ and L/F Picard-Vessiot extension with differential Galois group H, is there a Picard-Vessiot extension E/F with differential Galois group G such that E contains L (compatibly with π)?

In other words, can we construct Picard-Vessiot extensions compatibly in towers?

Example:

$$\begin{aligned} \pi &: G = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in K, a \neq 0 \right\} \twoheadrightarrow \operatorname{GL}_1, \ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mapsto a, \\ L &= F(e^x) \text{ with } F = K(x) \text{ as before.} \\ &\rightsquigarrow \operatorname{Consider} \partial(y) = \begin{pmatrix} 1 & \frac{1}{x+1} \\ 0 & -1 \end{pmatrix} y. \text{ Complete set of solutions:} \\ y_1 &= \begin{pmatrix} e^x \\ 0 \end{pmatrix}, y_2 = \begin{pmatrix} g \\ e^{-x} \end{pmatrix}, \end{aligned}$$

where we fixed a $g\in K[[x]]$ with $\partial(g)=\frac{1}{x+1}e^{-2x}.$

Differential embedding problem:

Given $\pi: G \rightarrow H$ and L/F Picard-Vessiot extension with differential Galois group H, is there a Picard-Vessiot extension E/F with differential Galois group G such that E contains L (compatibly with π)?

In other words, can we construct Picard-Vessiot extensions compatibly in towers?

Example:

$$\pi \colon G = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in K, a \neq 0 \} \twoheadrightarrow \operatorname{GL}_1, \ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mapsto a,$$

 $L = F(e^x)$ with F = K(x) as before.

$$\rightarrow \text{Consider } \partial(y) = \begin{pmatrix} 1 & \frac{1}{x+1} \\ 0 & -1 \end{pmatrix} y. \text{ Complete set of solutions:}$$
$$y_1 = \begin{pmatrix} e^x \\ 0 \end{pmatrix}, y_2 = \begin{pmatrix} g \\ e^{-x} \end{pmatrix},$$

where we fixed a $g \in K[[x]]$ with $\partial(g) = \frac{1}{x+1}e^{-2x}$. Picard-Vessiot extension $E = F(e^x, g)$ with differential Galois group G and restriction $\operatorname{Aut}^{\partial}(E/F) \twoheadrightarrow \operatorname{Aut}^{\partial}(L/F)$ corresponds to π .

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?
- 3. Combining these questions: how many essentially different solutions does a given differential embedding problem have?

Let

$$\partial(y) = A_i y, i \in I$$

be a family of differential equations over F = K(x).

Let

$$\partial(y) = A_i y, i \in I$$

be a family of differential equations over F = K(x). A differential field extension E/F is called Picard-Vessiot extension of infinite type for this family, if

Let

$$\partial(y) = A_i y, i \in I$$

be a family of differential equations over F = K(x). A differential field extension E/F is called Picard-Vessiot extension of infinite type for this family, if

- ▶ for every $i \in I$, there exists a complete set of solutions of $\partial(y) = A_i y$ with entries in *E*
- \blacktriangleright E is generated as a field extensions by the entries of all these solutions
- E has no new constants

Let

$$\partial(y) = A_i y, i \in I$$

be a family of differential equations over F = K(x). A differential field extension E/F is called Picard-Vessiot extension of infinite type for this family, if

- ▶ for every $i \in I$, there exists a complete set of solutions of $\partial(y) = A_i y$ with entries in *E*
- \blacktriangleright E is generated as a field extensions by the entries of all these solutions
- E has no new constants

 \rightsquigarrow such an extension E always exists and it is unique up to isomorphism

Let

$$\partial(y) = A_i y, i \in I$$

be a family of differential equations over F = K(x). A differential field extension E/F is called Picard-Vessiot extension of infinite type for this family, if

- ▶ for every $i \in I$, there exists a complete set of solutions of $\partial(y) = A_i y$ with entries in *E*
- \blacktriangleright E is generated as a field extensions by the entries of all these solutions
- E has no new constants

 \rightsquigarrow such an extension E always exists and it is unique up to isomorphism

 \rightsquigarrow The differential Galois group of E/F is again defined as $G = \operatorname{Aut}^{\partial}(E/F)$

Fact: G is a proalgebraic group over K, i.e., it is an inverse limit $\varprojlim G_i$ of linear algebraic groups over K, or, equivalently, an affine group scheme over K.

Consider a maximal no-new-constants extension \tilde{E} over F = K(x) of differential fields (exists by Zorn's lemma).

Consider a maximal no-new-constants extension \tilde{E} over F = K(x) of differential fields (exists by Zorn's lemma). Define

$$\tilde{F} = \bigcup_{E \subset \tilde{E}, E/F \text{ is a Picard-Vessiot extension}} E$$

Consider a maximal no-new-constants extension \tilde{E} over F = K(x) of differential fields (exists by Zorn's lemma). Define

$$\tilde{F} = \bigcup_{E \subset \tilde{E}, E/F \text{ is a Picard-Vessiot extension}} E$$

Then \tilde{F} is the Picard-Vessiot extension (of infinite type) of the family of *all* linear differential equations over F. Its Galois group is called the absolute differential Galois group of F:

$$G(\tilde{F}/F) = \operatorname{Aut}^{\partial}(\tilde{F}/F)$$

Consider a maximal no-new-constants extension \tilde{E} over F = K(x) of differential fields (exists by Zorn's lemma). Define

$$\tilde{F} = \bigcup_{E \subseteq \tilde{E}, E/F \text{ is a Picard-Vessiot extension}} E$$

Then \tilde{F} is the Picard-Vessiot extension (of infinite type) of the family of *all* linear differential equations over F. Its Galois group is called the absolute differential Galois group of F:

$$G(\tilde{F}/F) = \operatorname{Aut}^{\partial}(\tilde{F}/F)$$

Note: $\operatorname{Aut}^{\partial}(\tilde{F}/F) = \varprojlim_{E \subseteq \tilde{E}} \operatorname{Aut}^{\partial}(E/F)$ is a proalgebraic group

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?
- 3. Combining these questions: how many essentially different solutions does a given differential embedding problem have?

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?
- 3. Combining these questions: how many essentially different solutions does a given differential embedding problem have?
- 4. Instead of only asking which algebraic groups occur as Galois groups one can ask which proalgebraic groups occur: Is every proalgebraic group with $rank(G) \le |K|$ the differential Galois group of some Picard-Vessiot extension (of infinite type)?

- Given a linear algebraic group G, in how many essentially different ways does it occur as a differential Galois group? Define
 κ_G := cardinality of isomorphism classes of extensions with group G
 ls κ_G = |K|? (known for connected solvable groups (Kovacic, 1969)).
- 2. Instead of only realizing a given group, can we realize a given surjective morphism? I.e., can we solve all differential embedding problems over K(x)?
- 3. Combining these questions: how many essentially different solutions does a given differential embedding problem have?
- 4. Instead of only asking which algebraic groups occur as Galois groups one can ask which proalgebraic groups occur: Is every proalgebraic group with $rank(G) \le |K|$ the differential Galois group of some Picard-Vessiot extension (of infinite type)?
- 5. Combine 2 and 4: Given proalgebraic groups $\pi: G \twoheadrightarrow H$ and L/F Picard-Vessiot extension (of infinite type) with differential Galois group H, is there a solution to this differential embedding problem if we assume $\operatorname{rank}(G) \leq |K|$ and $\operatorname{rank}(H) < |K|$?

Our result

Our result

Theorem (B., Harbater, Hartmann, Wibmer, 2020)

Let K be an algebraically closed field of characteristic zero and infinite transcendence degree over \mathbb{Q} .

Then we can give affirmative answers to all these five generalizations of the inverse differential Galois problem.

Our result

Theorem (B., Harbater, Hartmann, Wibmer, 2020)

Let K be an algebraically closed field of characteristic zero and infinite transcendence degree over \mathbb{Q} .

- Then we can give affirmative answers to all these five generalizations of the inverse differential Galois problem.
- ▶ Moreover, we show that absolute differential Galois group of *K*(*x*) is free of rank |*K*|.

Matzat's conjecture

Matzat's conjecture

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Matzat's conjecture

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for K of infinite transcendence degree.

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for K of infinite transcendence degree.

The conjecture was inspired by

Theorem (Geometric Shafarevich conjecture)

Let K be an algebraically closed field. Then the absolute Galois group of K(x) is free of rank |K|.

Solved in 1964 by Douady for the case char(K) = 0 and for general K in 1995 by Harbater and Pop.

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for K of infinite transcendence degree.

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for ${\boldsymbol K}$ of infinite transcendence degree.

Proposition

Matzat's conjecture holds if and only

- (i) every differential embedding problem $(G \twoheadrightarrow H, L)$ over K(x) with G, H of finite type has a solution and
- (ii) every split admissible differential embedding problem over F has a solution.

Conjecture (Matzat)

Let K be an algebraically closed field of characteristic zero. Then the absolute differential Galois group of K(x) is free of rank |K|.

Our theorem proves this conjecture for ${\boldsymbol K}$ of infinite transcendence degree.

Proposition

Matzat's conjecture holds if and only

- (i) every differential embedding problem $(G \twoheadrightarrow H, L)$ over K(x) with G, H of finite type has a solution and
- (ii) every split admissible differential embedding problem over F has a solution.

Here, a differential embedding problem $(G \twoheadrightarrow H, L)$ with proalgebraic groups G, H and L/K(x) a Picard-Vessiot extension (of infinite type) with Galois group H is called

▶ admissible, if rank(H) < |K| and $N = ker(G \twoheadrightarrow H)$ is of finite type

• split, if
$$G \twoheadrightarrow H$$
 splits, i.e. $G = N \rtimes H$

Solving a special case over K(x)

Consider F = K(x) with K algebraically closed of infinite transcendence degree. Let $G = N \rtimes H$ be an algebraic group and let L/F be a Picard-Vessiot extension with Galois group H.

Consider F = K(x) with K algebraically closed of infinite transcendence degree. Let $G = N \rtimes H$ be an algebraic group and let L/F be a Picard-Vessiot extension with Galois group H.

Previous result (joint with David Harbater, Julia Hartmann and Florian Pop): Even in the more general situation of large fields K of infinite transcendence degree, such an embedding problem can be solved.

Large fields

Large fields

Definition

A field K is large if for every smooth K-curve C with $C(K) \neq \emptyset$ there are infinitely many K-points: $|C(K)| = \infty$.

Large fields

Definition

A field K is large if for every smooth K-curve C with $C(K) \neq \emptyset$ there are infinitely many K-points: $|C(K)| = \infty$.

Example:

- PAC fields, in particular algebraically closed fields
- K complete wrt non-trivial absolute value, e.g. \mathbb{R} , \mathbb{Q}_p , k((t))
- Fraction fields of domains that are Henselian wrt non-trivial ideal, e.g. $K = k((t_1, \ldots, t_n))$, Puiseaux series fields,...

Consider F = K(x). Let $G = N \rtimes H$ be a proalgebraic group over K and L/F a Picard-Vessiot extension with Galois group H such that the embedding problem $(N \rtimes H, L)$ is admissible, in particular, N is of finite type.

Consider F = K(x). Let $G = N \rtimes H$ be a proalgebraic group over K and L/F a Picard-Vessiot extension with Galois group H such that the embedding problem $(N \rtimes H, L)$ is admissible, in particular, N is of finite type.

Goal: Find a Picard-Vessiot extension E/F with Galois group G and $E \supseteq L$ compatibly with $G \twoheadrightarrow H$.

Consider F = K(x). Let $G = N \rtimes H$ be a proalgebraic group over K and L/F a Picard-Vessiot extension with Galois group H such that the embedding problem $(N \rtimes H, L)$ is admissible, in particular, N is of finite type.

Goal: Find a Picard-Vessiot extension E/F with Galois group G and $E \supseteq L$ compatibly with $G \twoheadrightarrow H$.

Write $H = \lim_{i \in I} H_i$ with $H_i = H/U_i$ of finite type and $L = \lim_{i \in I} L_i$ with L_i/F Picard-Vessiot with Galois group H_i .

Consider F = K(x). Let $G = N \rtimes H$ be a proalgebraic group over K and L/F a Picard-Vessiot extension with Galois group H such that the embedding problem $(N \rtimes H, L)$ is admissible, in particular, N is of finite type.

Goal: Find a Picard-Vessiot extension E/F with Galois group G and $E \supseteq L$ compatibly with $G \twoheadrightarrow H$.

Write $H = \lim_{i \in I} H_i$ with $H_i = H/U_i$ of finite type and $L = \lim_{i \in I} L_i$ with L_i/F Picard-Vessiot with Galois group H_i . We would like to write " $G = \lim_{i \in I} (N \rtimes H_i)$ ".

Consider F = K(x). Let $G = N \rtimes H$ be a proalgebraic group over K and L/F a Picard-Vessiot extension with Galois group H such that the embedding problem $(N \rtimes H, L)$ is admissible, in particular, N is of finite type.

Goal: Find a Picard-Vessiot extension E/F with Galois group G and $E \supseteq L$ compatibly with $G \twoheadrightarrow H$.

Write $H = \lim_{i \in I} H_i$ with $H_i = H/U_i$ of finite type and $L = \lim_{i \in I} L_i$ with L_i/F Picard-Vessiot with Galois group H_i . We would like to write " $G = \lim_{i \in I} (N \rtimes H_i)$ ".

Use that N is of finite type $\rightsquigarrow U_i$ acts trivially on N "for sufficiently many $i \in I$ ", i.e., $\exists J \subseteq I$ s.t. U_j acts trivially on N for every $j \in J$ and $\bigcap_{i \in J} U_j = 1$.

Then $H = \varprojlim_{j \in J} H_j$, $G = \varprojlim_{j \in J} N \rtimes H_j$ and $L = \varinjlim_{j \in J} L_j$. Hence for each j, $(N \rtimes H_j, L_j)$ defines a differential embedding problem (of finite type) and we can obtain solutions E_j for every j.

 \rightsquigarrow show that these solutions are compatible, i.e., $\lim_{i \to j \in J} E_j$ yields a solution to the given differential embedding problem $(N \rtimes H, L)$.

[1] *Free differential Galois groups*, with David Harbater, Julia Hartmann and Michael Wibmer, **Transactions of the American Mathematical Society (to appear)**.

[2] *The differential Galois group of the rational function field*, with David Harbater, Julia Hartmann and Michael Wibmer, **Advances in Mathematics (to appear)**.

Notes

Notes

Free proalgebraic groups

Free proalgebraic groups

Free proalgebraic groups

Let X be a set. A proalgebraic group Γ together with a map $\iota\colon X\to \Gamma(\bar{K})$ such that " ι converges to 1" is called the free proalgebraic group on X if for all other such pairs (Γ', ι') there exists a unique morphism $\psi\colon \Gamma\to \Gamma'$ such that

commutes.