Presenting isomorphic finitely presented modules by equivalent matrices: a constructive approach

Thomas Cluzeau

University of Limoges, XLIM

In collaboration with C. Chenavier (Univ. Limoges - XLIM) and A. Quadrat (Inria Paris)

Journées du GDR EFI 2021

Linear systems and finitely presented left *D*-modules $\diamond D$ ring of functional operators, $R \in D^{q \times p}$, and \mathcal{F} a left *D*-module

♦ Consider the linear system $\ker_{\mathcal{F}}(R.) = \{\eta \in \mathcal{F}^p \mid R \eta = 0\}.$

◊ We associate the following finitely presented left *D*-module:

 $M = D^{1 \times p} / (D^{1 \times q} R),$

given by the finite presentation:

♦ Malgrange's isomorphism: $\ker_{\mathcal{F}}(R.) \cong \hom_{D}(M, \mathcal{F})$

 \diamond Algebraic analysis: the linear system ker_{*F*}(*R*.) can be studied by means of the finitely presented left *D*-module *M*.

Thomas Cluzeau (Univ. Limoges, XLIM)

Example in the theory of linear elasticity (*Pommaret'01*)

$$\diamond (S) \begin{cases} \partial_1 \xi_1 = 0, \\ \frac{1}{2} (\partial_2 \xi_1 + \partial_1 \xi_2) = 0, \\ \partial_2 \xi_2 = 0. \end{cases} \qquad (S') \begin{cases} \partial_1 \zeta_1 = 0, \quad \partial_2 \zeta_1 - \zeta_2 = 0, \\ \partial_1 \zeta_2 = 0, \quad \partial_1 \zeta_3 + \zeta_2 = 0, \\ \partial_2 \zeta_3 = 0, \quad \partial_2 \zeta_2 = 0. \end{cases}$$

 \diamond We consider the ring $D = \mathbb{Q}[\partial_1, \partial_2]$ and we have

 \diamond We associate $M = D^{1 \times 2}/(D^{1 \times 3} R)$ and $M' = D^{1 \times 3}/(D^{1 \times 6} R')$.

Two theorems about isomorphisms and equivalences

Theorem (Fitting, 1936)

Two matrices $R \in D^{q \times p}$ and $R' \in D^{q' \times p'}$ presenting isomorphic left D-modules can be inflated with blocks of 0 and I to get equivalent matrices presenting the same left D-modules.

Theorem (Warfield, 1978)

If two positive integers **s** and **r** satisfy

$$s \leq \min(p+q',q+p'), \quad rac{\mathrm{sr}(D)}{r \leq \min(p,p')} \leq \max(p+q'-s,q+p'-s), \ r \leq \min(p,p'), \quad rac{\mathrm{sr}(D)}{sr(D)} \leq \max(p-r,p'-r),$$

then we can remove s blocks of zeros and r blocks of identity.

◊ Goal of the talk: give constructive versions of both theorems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \diamond We will prove that $M = D^{1 \times 2}/(D^{1 \times 3} R) \cong M' = D^{1 \times 3}/(D^{1 \times 6} R').$

♦ Constructive version of Fitting's theorem: compute $X \in GL_5(D)$ and $Y \in GL_{14}(D)$ such that:

1	0	0	0	0	0			$\begin{pmatrix} \partial_1 \end{pmatrix}$	0	0	0	0 \	
1	0	0	0	0	0			$\frac{1}{2} \partial_2$	$\frac{1}{2} \partial_1$	0	0	0	
	0	0	0	0	0			0	∂_2	0	0	0	
	0	0	0	0	0			0	0	1	0	0	
	0	0	0	0	0			0	0	0	1	0	
	0	0	0	0	0			0	0	0	0	1	
	1	0	0	0	0	-	$-v^{-1}$	0	0	0	0	0	v
	0	1	0	0	0		- 1	0	0	0	0	0	Λ.
	0	0	∂_1	0	0	-		0	0	0	0	0	
	0	0	∂_2	$^{-1}$	0			0	0	0	0	0	
l	0	0	0	∂_1	0			0	0	0	0	0	
	0	0	0	1	∂_1			0	0	0	0	0	
	0	0	0	0	∂_2			0	0	0	0	0	
(0	0	0	∂_2	0)		\ o	0	0	0	0/	

(日) (四) (日) (日) (日)

♦ Constructive version of Warfield's theorem (slight generalization): compute $X' \in GL_3(D)$ and $Y' \in GL_7(D)$ such that:

(0	0		$\begin{pmatrix} \partial_1 \end{pmatrix}$	0	0	
∂_1	0	0		$\frac{1}{2}\partial_2$	$rac{1}{2}\partial_1$	0	
∂_2	-1	0		0	∂_2	0	
0	∂_1	0	$=Y'^{-1}$	0	0	1	<i>X</i> ′.
0	1	∂_1		0	0	0	
0	0	∂_2		0	0	0	
0	∂_2	0 /		0	0	0	

Part I

Definition of isomorphic finitely presented left *D*-modules in terms of matrix equalities

Thomas Cluzeau (Univ. Limoges, XLIM)

Homomorphisms in terms of matrix equality

 \diamond Let D be a ring of functional operators.

 \diamond Let $R \in D^{q \times p}$, $R' \in D^{q' \times p'}$ be two matrices.

♦ We have the following commutative exact diagram:

 $\exists f: M \to M' \Longleftrightarrow \exists P \in D^{p \times p'}, \ Q \in D^{q \times q'} \text{ such that:}$ $R \ P = Q \ R'.$

Moreover, we have $f(\pi(\lambda)) = \pi'(\lambda P)$, for all $\lambda \in D^{1 \times p}$.

Isomorphisms in terms of matrix equalities

 $\diamond f \in \hom_D(M, M')$ given by P and Q such that RP = QR'.

♦ $f \in iso_D(M, M')$ if and only if there exist $P' \in D^{p' \times p}$, $Q' \in D^{q' \times q}$, $Z \in D^{p \times q}$ and $Z' \in D^{p' \times q'}$ satisfying the following relations:

R' P' = Q' R, $P P' + Z R = I_p$, $P' P + Z' R' = I_{p'}$.

Then, there exist $Z_2 \in D^{q \times r}$ and $Z'_2 \in D^{q' \times r'}$ such that:

 $Q Q' + R Z + Z_2 R_2 = I_q, \quad Q' Q + R' Z' + Z'_2 R'_2 = I_{q'},$

where ker_D(.R) = $D^{1 \times r} R_2$ and ker_D(.R') = $D^{1 \times r'} R'_2$.

イロト 不得下 イヨト イヨト 二日

Implementations

 \diamond All the matrices appearing in the relations defining (iso)morphisms can be computed from *R* and *R'* using (non-commutative) Gröbner basis calculations.

◊ Implementations:

- Maple package OREMORPHISMS (C.Q.) based on OREMODULES (Chyzak, Q., Robertz);
- Mathematica package OREALGEBRAICANALYSIS (C., Q., Tõnso) based on HOLONOMICFUNCTIONS (Koutschan);

SapAndHomalg (Barakat et al).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 \diamond We have R P = Q R' with:

$$P = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right), \ Q = \frac{1}{2} \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{array}\right).$$

 \diamond We have R' P' = Q' R, $P P' + Z R = I_p$, and $P' P + Z' R' = I_{p'}$ with:

 \diamond This proves that $M = D^{1 \times 2}/(D^{1 \times 3} R) \cong M' = D^{1 \times 3}/(D^{1 \times 6} R')$.

Part II

Constructive version of Fitting's theorem

Thomas Cluzeau (Univ. Limoges, XLIM)

Isomorphisms and equivalences

June 1, 2021 12 / 36

Statement of the problem

 \diamond Let $M = D^{1 \times p}/(D^{1 \times q} R)$ and $M' = D^{1 \times p'}/(D^{1 \times q'} R')$.

 \diamond Assume that $M \cong M'$

Theorem (Fitting, 1936)

Two matrices $R \in D^{q \times p}$ and $R' \in D^{q' \times p'}$ presenting isomorphic left D-modules can be inflated with blocks of 0 and I to get equivalent matrices presenting the same left D-modules.

 \diamond <u>Goal</u>: Compute inflations *L* and *L'* of *R* and *R'* with blocks of 0 and *I* and two unimodular matrices *X* and *Y* such that:

- L and L' respectively define a finite presentation of M and M';
- L and L' are equivalent matrices, i.e., we have $L' = Y^{-1}LX$.

 \diamond We give explicit formulas for X and Y in terms of the matrices defining the isomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Explicit Fitting's theorem

$$= q + p' + p + q' \quad \text{and define the matrices:}$$

$$X = \begin{pmatrix} l_p & P \\ -P' & l_{p'} - P'P \end{pmatrix} \in GL_m(D), \quad X^{-1} = \begin{pmatrix} l_p - PP' & -P \\ P' & l_{p'} \end{pmatrix}.$$

$$Y = \begin{pmatrix} l_q & 0 & R & Q \\ 0 & l_{p'} & -P' & Z' \\ -Z & P & 0 & PZ' - ZQ \\ -Q' & -R' & 0 & Z'_2R'_2 \end{pmatrix} \in GL_n(D),$$
with inverse given by
$$Y^{-1} = \begin{pmatrix} Z_2R_2 & 0 & -R & -Q \\ P'Z - Z'Q' & 0 & P' & -Z' \\ Z & -P & l_p & 0 \\ Q' & R' & 0 & l_{q'} \end{pmatrix}.$$

(*ロト *個ト *注ト *注ト - 注

Explicit Fitting's theorem

$$\diamond$$
 Let $L = \begin{pmatrix} R & 0 \\ 0 & I_{p'} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \in D^{n \times m}, \quad L' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ I_{p} & 0 \\ 0 & R' \end{pmatrix} \in D^{n \times m}.$

◊ The following commutative exact diagram holds:

and L and L' are equivalent matrices, i.e.,

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ l_p & 0 \\ 0 & R' \end{pmatrix} = Y^{-1} \begin{pmatrix} R & 0 \\ 0 & l_{p'} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} X.$$

 $\diamond \ We \ get$

1	0	0	0	0	0	\		$\begin{pmatrix} \partial_1 \end{pmatrix}$	0	0	0	0 \	
	0	0	0	0	0			$\frac{1}{2}\partial_2$	$\frac{1}{2} \partial_1$	0	0	0	
	0	0	0	0	0			0	∂_2	0	0	0	
	0	0	0	0	0			0	0	1	0	0	
	0	0	0	0	0			0	0	0	1	0	
	0	0	0	0	0			0	0	0	0	1	
ľ	1	0	0	0	0	-	$-v^{-1}$	0	0	0	0	0	
	0	1	0	0	0		- 1	0	0	0	0	0	Λ.
1	0	0	∂_1	0	0	-		0	0	0 0 0	0		
	0	0	∂_2	-1	0			0	0	0	0	0	
	0	0	0	∂_1	0			0	0	0	0	0	
	0	0	0	1	∂_1			0	0	0	0	0	
	0	0	0	0	∂_2			0	0	0	0	0	
(0	0	0	∂_2	0)		\ ₀	0	0	0	0/	

(日) (四) (日) (日) (日)

э

Example in the theory of 2D linear elasticity $\diamond X \in GL_5(D)$ and $Y \in GL_{14}(D)$ are given by:

					/ 1	0	1	0	0 \					
					0	1	0	0	1					
				<i>X</i> =	-1	. 0	0	0	0,					
					$-\partial$	2 0	$-\partial_2$	1	0					
					(o	$^{-1}$	0	0	o /					
	(1	0	0	0	0	0	∂_1	0	1	0	0	0	0	0)
	0	1	0	0	0	0	$\frac{1}{2} \partial_2$	$\frac{1}{2} \partial_1$	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0
	0	0	1	0	0	0	0	∂_2	0	0	0	0	1	0
	0	0	0	1	0	0	$^{-1}$	0	0	0	0	0	0	0
	0	0	0	0	1	0	$-\partial_2$	0	0	$^{-1}$	0	0	0	0
	0	0	0	0	0	1	0	$^{-1}$	0	0	0	0	0	0
V -	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1 -	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	-1	0	0	$-\partial_1$	0	0	0	0	0	0	0	0	0	0
	0	0	0	$-\partial_2$	1	0	0	0	0	0	0	0	0	0
	$-\partial_2$	0	0	0	$-\partial_1$	0	0	0	$-\partial_2$	∂_1	1	0	0	0
	0	-2	0	0	$^{-1}$	$-\partial_1$	0	0	0	0	0	0	0	0
	0	0	$^{-1}$	0	0	$-\partial_2$	0	0	0	0	0	0	0	0
	\ 0	$-2\partial_2$	∂_1	0	$-\partial_2$	0	0	0	0	0	0	$-\partial_2$	∂_1	1 /

Thomas Cluzeau (Univ. Limoges, XLIM)

June 1, 2021 17 / 36

Image: A match a ma

Part III

Constructive version of Warfield's theorem

Thomas Cluzeau (Univ. Limoges, XLIM)

Isomorphisms and equivalences

June 1, 2021 18 / 36

Statement of the problem $\Rightarrow \text{Let } M = D^{1 \times p} / (D^{1 \times q} R) \cong M' = D^{1 \times p'} / (D^{1 \times q'} R').$

 \diamond Assume that $L' = Y^{-1} L X$ as before (Fitting's theorem).

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

$$s \leq \min(p+q',q+p'), \quad rac{\mathrm{sr}(D)}{r \leq \min(p,p')} \leq \max(p+q'-s,q+p'-s)$$

 $r \leq \min(p,p'), \quad rac{\mathrm{sr}(D)}{r \leq \max(p-r,p'-r)},$

then we can remove s blocks of zeros and r blocks of identity.

◊ Goal: Compute $X_r \in \operatorname{GL}_{m-r}(D)$ and $Y_{s,r} \in \operatorname{GL}_{n-s-r}(D)$ such that:

$$\begin{pmatrix} 0 & 0 \\ l_{p-r} & 0 \\ 0 & R' \end{pmatrix} = Y_{s,r}^{-1} \begin{pmatrix} R & 0 \\ 0 & l_{p'-r} \\ 0 & 0 \end{pmatrix} X_r$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stable rank of a ring D

Definitions (e.g., McConnell & Robson)

- $u \in D^n$ is unimodular if $\exists v \in D^{1 \times n}$ such that v = 1.
- ② $u = (u_1, ..., u_n)^T \in D^n$ is stable if $\exists d_1, ..., d_{n-1} \in D$ such that $(u_1 + d_1 u_n, ..., u_{n-1} + d_{n-1} u_n)^T \in D^{n-1}$ is unimodular.
- So An integer r is said to be in the stable range of D if $\forall n > r$, a unimodular vector $u \in D^n$ is stable.
- The stable rank sr(D) of D is the smallest positive integer that is in the stable range of D. If no such integer exists, then $sr(D) = +\infty$.

◊ Examples:

- If D is a principal domain, then $sr(D) \ge 2$;
- **2** $\forall n \geq 1$, we have sr($\mathbb{Q}[x_1, \ldots, x_n]$) = n + 1 (*Vasershtein'71*);
- $\operatorname{sr}(A_n(k)) = 2$ and $\operatorname{sr}(B_n(k)) = 2$ (Stafford's theorem *Stafford'78*).

< □ > < □ > < □ > < □ > < □ > < □ >

A key result based on sr(D)

Lemma

Let D be a ring and n, m two integers such that $\operatorname{sr}(D) \leq m$. Let $u \in D^{n+m+1}$ be a unimodular column vector such that we have:

$$v u = \begin{pmatrix} v_n & v_{m+1} \end{pmatrix} \begin{pmatrix} u_n \\ u_m \\ u_1 \end{pmatrix} = 1,$$

where $v_n \in D^{1 \times n}$, $v_{m+1} \in D^{1 \times (m+1)}$, $u_n \in D^n$, $u_m \in D^m$, $u_1 \in D$. Then, there exist $c_1 \in D$, $\tilde{u}_m \in D^m$, $\tilde{v}_m \in D^{1 \times m}$ such that we have:

$$\begin{pmatrix} \mathbf{c_1} \ \mathbf{v}_n & \mathbf{\tilde{v}_m} \end{pmatrix} \begin{pmatrix} u_n \\ u_m + \mathbf{\tilde{u}_m} \ u_1 \end{pmatrix} = 1.$$

 \diamond No general algorithm for computing c_1 , \tilde{u}_m , and \tilde{v}_m in any ring D.

 \diamond But algorithms and heuristics are implemented for some particular rings D (as for instance Weyl algebras) and allow to treat examples.

Thomas Cluzeau (Univ. Limoges, XLIM)

Isomorphisms and equivalences

June 1, 2021 21 / 36

An iterative process

 \diamond Starting point: $X \in \operatorname{GL}_m(D)$ and $Y \in \operatorname{GL}_n(D)$ such that $L' = Y^{-1} L X$.

 \diamond We assume that s and r satisfy the hypothesis of Warfield's theorem.

 \diamond <u>Remove s zeros rows</u>: From $Y_0 := Y$, we compute recursively matrices Y_1, \ldots, Y_s such that: $\forall i = 1, \ldots, s$,

 \diamond Remove *r* identity blocks: From $Y_{s,0} := Y_s$ and $X_0 := X$, we compute recursively $Y_{s,1}, \ldots, Y_{s,r}$ and X_1, \ldots, X_r such that: $\forall j = 1, \ldots, r$,

$$Y_{s,j} \in \mathrm{GL}_{n-s-j}(D), \ X_j \in \mathrm{GL}_{m-j}(D), \ \underbrace{\begin{pmatrix} 0 & 0 \\ I_{p-j} & 0 \\ 0 & R' \end{pmatrix}}_{L_{s,j}' \in D^{(n-s-j) \times (m-j)}} = Y_{s,j}^{-1} \underbrace{\begin{pmatrix} R & 0 \\ 0 & I_{p'-j} \\ 0 & 0 \end{pmatrix}}_{L_{s,j} \in D^{(n-s-j) \times (m-j)}} X_j.$$

Procedure to remove zero rows: general description $\diamond \underline{\text{Hyp.}}$: we have computed $Y_{i-1} \in \text{GL}_{n-i+1}(D)$ s.t. $L'_{i-1} = Y_{i-1}^{-1} L_{i-1} X$.

$$\begin{array}{ccccc} D^{1 \times (n-i)} & \xrightarrow{.L'_i} & D^{1 \times m} \\ \uparrow .G'_i & \uparrow .I_m \\ \hline D^{1 \times (n-i+1)} & \xrightarrow{.L'_{i-1}} & D^{1 \times m} \\ \uparrow .Y_{i-1} & \uparrow .X \\ \hline D^{1 \times (n-i+1)} & \xrightarrow{.L_{i-1}} & D^{1 \times m} \\ \uparrow .W_i & \uparrow .I_m \\ \hline D^{1 \times (n-i+1)} & \xrightarrow{.L_{i-1}} & D^{1 \times m} \\ \hline D^{1 \times (n-i)} & \xrightarrow{.L_i} & D^{1 \times m} \end{array}$$

$$\implies L_i X = \underbrace{(H_i W_i Y_{i-1} G'_i)}_{Y_i \in GL_{n-i}(D)} L_{i-1}, \quad Y_i^{-1} = H'_i Y_{i-1}^{-1} W_i^{-1} G_i.$$

Thomas Cluzeau (Univ. Limoges, XLIM)

Procedure to remove zero rows: matrix computations

 \diamond We decompose Y_{i-1} and its inverse Y_{i-1}^{-1} by blocks as follows:

$$Y_{i-1} = \begin{pmatrix} Y_{11} \\ Y_{21} \\ Y_{31} \end{pmatrix} \stackrel{\leftarrow}{\leftarrow} \begin{array}{c} q+p' & 1 \\ \leftarrow p+q'-i & \downarrow & \downarrow \\ \leftarrow 1 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

♦ As $sr(D) \le p + q' - s$, the key lemma implies that there exist $c \in D$, $u \in D^{p+q'-i}$, $v \in D^{1 \times (p+q'-i)}$ such that, if k = q + p' - (i - 1), then

$$(c(Y'_{11})_{k.} v) \begin{pmatrix} (Y_{11})_{.k} \\ (Y_{21})_{.k} + u(Y_{31})_{k} \end{pmatrix} = 1.$$

 \diamond Assume $c \in D$, $u \in D^{p+q'-i}$, $v \in D^{1 \times (p+q'-i)}$ have been computed.

Procedure to remove zero rows: matrix computations

$$\diamond W_i = \begin{pmatrix} I_{q+p'} & 0 & 0 \\ 0 & I_{p+q'-i} & u \\ 0 & 0 & 1 \end{pmatrix} \in \operatorname{GL}_{n-i+1}(D) \rightsquigarrow \text{ commuting square diagram:}$$

$$\begin{array}{ccc} D^{1 \times (n-i+1)} & \xrightarrow{.L_{i-1}} & D^{1 \times m} \\ .W_i^{-1} \downarrow \uparrow .W_i & .I_m \downarrow \uparrow .I_m \\ D^{1 \times (n-i+1)} & \xrightarrow{.L_{i-1}} & D^{1 \times m} \end{array}$$

$$\diamond \text{ Let } \tilde{\ell}_i = \begin{pmatrix} c(Y'_{11})_{k.} & v \end{pmatrix}, \ \ell_i = \begin{pmatrix} c(Y'_{11})_{k.} & v & 0 \end{pmatrix}, \ F_i = \begin{pmatrix} Y_{11} \\ Y_{21} + u & Y_{31} \end{pmatrix}$$

Procedure to remove zero rows: matrix computations $\diamond G_i = \begin{pmatrix} I_{n-i} - (F_i)_{.k} \tilde{\ell}_i \\ \tilde{\ell}_i \end{pmatrix}$, $H_i = (I_{n-i} - (F_i)_{.k} \tilde{\ell}_i \quad (F_i)_{.k})$ satisfy $H_i G_i = I_{n-i}$ and the following groups diagrams commutes:

and the following square diagrams commutes:

$$\begin{array}{cccc} D^{1 \times (n-i+1)} & \xrightarrow{.L_{i-1}} & D^{1 \times m} \\ \uparrow .H_i & & \uparrow .I_m \\ D^{1 \times (n-i)} & \xrightarrow{.L_i} & D^{1 \times m} \end{array}$$

$$\diamond \ G'_{i} = \left(I_{n-i+1} - (f_{k}^{n-i+1})^{T} \ \ell_{i} \ W_{i} \ Y_{i-1}\right) \begin{pmatrix} I_{k-1} & 0 \\ 0 & 0 \\ 0 & I_{p+q'} \end{pmatrix}, \ H'_{i} = \begin{pmatrix} I_{k-1} & 0 & 0 \\ 0 & 0 & I_{p+q'} \end{pmatrix},$$

satisfy $H'_i G'_i = I_{n-i}$ and the following square diagrams commutes:

$$\begin{array}{ccc} D^{1\times(n-i)} & \xrightarrow{.L'_i} & D^{1\times m} \\ \uparrow .G'_i & \uparrow .I_m \\ D^{1\times(n-i+1)} & \xrightarrow{.L'_{i-1}} & D^{1\times m} \end{array}$$

Thomas Cluzeau (Univ. Limoges, XLIM)

June 1, 2021 26 / 36

Procedure to remove zero rows: matrix computations $\diamond Y_i = H_i W_i Y_{i-1} G'_i \in GL_{n-i}(D)$ with inverse $Y_i^{-1} = H'_i Y_{i-1}^{-1} W_i^{-1} G_i$.

 \diamond The following commutative exact diagram holds

and L_i and L'_i are equivalent matrices.

◊ Matrices given explicitly in terms of those of the previous equivalence.

Problem reduced to computing $c \in D$, $u \in D^{p+q'-i}$, $v \in D^{1 \times (p+q'-i)}$ s.t.:

$$\begin{pmatrix} c(Y'_{11})_{k.} & v \end{pmatrix} \begin{pmatrix} (Y_{11})_{.k} \\ (Y_{21})_{.k} + u(Y_{31})_{k} \end{pmatrix} = 1.$$

- \diamond We have q = 3, p = 2, q' = 6, and p' = 3 so that n = 14 and m = 5.
- \diamond We have $q + p' = 6 \le p + q' = 8$, and $\operatorname{sr}(\mathbb{Q}[\partial_1, \partial_2]) = 3$.
- \diamond The integer *s* has to satisfy:
- $s \leq \min(p+q',q+p') = 6$, $\operatorname{sr}(D) \leq \max(p+q'-s,q+p'-s) = 8-s$,

 \implies We can remove s = 5 zero rows.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

◊ To remove the first zero row, we are reduced to solving:

$$(c (0 \ 0 \ 0 \ 0 \ 0 \ 0) \ v) \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -\partial_1 \\ -\partial_2 \end{pmatrix} + 0 \ u \\ \end{pmatrix} = 1,$$

♦ A solution is given by c = 0, $v = (0 \ 1 \ 0 \ 0 \ 0 \ 0)$, and $u = (0 \ 0 \ 0 \ 0 \ 0 \ 0)^T$

Image: A matrix and a matrix

 \diamond From the above formulas, we get $Y_1 \in \operatorname{GL}_{13}(D)$ s.t. $L'_1 = Y_1^{-1} L'_1 X$.

♦ Applying recursion, we compute $Y_i \in GL_{14-i}(D)$, i = 2, ..., 5 so that we finally get:

Procedure to remove identity blocks: general description

♦ <u>Hyp</u>: we have computed $Y_{s,j-1} \in \operatorname{GL}_{n-s-j+1}(D)$, $X_{j-1} \in \operatorname{GL}_{m-j+1}(D)$ satisfying $L'_{s,j-1} = Y_{s,j-1}^{-1} L_{s,j-1} X_{j-1}$.

$$\begin{array}{c|cccc} D^{1\times(n-s-j)} & \xrightarrow{.L'_{s,j}} & D^{1\times(m-j)} \\ \uparrow .G'_{1,j} & \uparrow .G'_{2,j} \\ D^{1\times(n-s-j+1)} & \xrightarrow{.L'_{s,j-1}} & D^{1\times(m-j+1)} \\ \uparrow .Y_{s,j-1} & \uparrow .X_{j-1} \\ D^{1\times(n-s-j+1)} & \xrightarrow{.L_{s,j-1}} & D^{1\times(m-j+1)} \\ \uparrow .W_{1,j} & \uparrow .W_{2,j} \\ D^{1\times(n-s-j+1)} & \xrightarrow{.L_{s,j-1}} & D^{1\times(m-j+1)} \\ \uparrow .H_{1,j} & \uparrow .H_{2,j} \\ D^{1\times(n-s-j)} & \xrightarrow{.L_{s,j}} & D^{1\times(m-j)} \end{array}$$

$$\implies L_{s,j} \underbrace{(H_{2,j} W_{2,j} X_{j-1} G'_{2,j})}_{X_j \in \mathrm{GL}_{m-j}(D)} = \underbrace{(H_{1,j} W_{1,j} Y_{s,j-1} G'_{1,j})}_{Y_{s,j} \in \mathrm{GL}_{n-s-i}(D)} L'_{s,j}.$$

Thomas Cluzeau (Univ. Limoges, XLIM)

Procedure to remove identity blocks: matrix computations

- \diamond The process is the same as for removing zero rows:
 - **(**) We decompose $Y_{s,j-1}$, X_{j-1} , and their inverses by blocks;
 - Solution The key lemma and the assumption sr(D) ≤ p' r implies that there exist c ∈ D, $u ∈ D^{p'-j}$, and $v ∈ D^{1×(p'-j)}$ s.t., if $k_2 = p j + 1$,

$$\begin{pmatrix} c(X'_{11})_{k_2}, & v \end{pmatrix} \begin{pmatrix} (X_{11})_{k_2} \\ (X_{21})_{k_2} + u(X_{31})_{k_2} \end{pmatrix} = 1;$$

Section 2 Explicit formulas for all the matrices are then obtained in terms of a solution c ∈ D, u ∈ D^{p'-j}, and v ∈ D^{1×(p'-j)}.

 \diamond We have q = 3, p = 2, q' = 6, and p' = 3 so that n = 14 and m = 5.

 \diamond We have $\operatorname{sr}(\mathbb{Q}[\partial_1, \partial_2]) = 3$.

 \diamond The positive integer *r* has to satisfy:

$$r \leq \min(p, p') = 2$$
, $\operatorname{sr}(D) \leq \max(p - r, p' - r) = 3 - r$,

 \implies No positive integer r satisfies the hypothesis of Warfield's theorem.

< □ > < 同 > < 三 > < 三 >

 \diamond We have q = 3, p = 2, q' = 6, and p' = 3 so that n = 14 and m = 5.

 $\diamond \text{ We have } \operatorname{sr}(\mathbb{Q}[\partial_1, \partial_2]) = 3.$

 \diamond The positive integer *r* has to satisfy:

$$r \leq \min(p, p') = 2$$
, $\operatorname{sr}(D) \leq \max(p - r, p' - r) = 3 - r$,

 \implies No positive integer *r* satisfies the hypothesis of Warfield's theorem.

♦ But, in the above process, the condition on *r* is just a <u>sufficient condition</u> for $(c(X'_{11})_{k_2}, v)\begin{pmatrix} (X_{11})_{k_2} \\ (X_{21})_{k_2} + u(X_{31})_{k_2} \end{pmatrix} = 1$ to admit a solution!

 \Rightarrow In some cases, such c, u, and v could exist without the hypothesis on r.

イロト 不得 トイヨト イヨト 二日

 \diamond Here, to remove the first identity block, we are reduced to solving:

$$\begin{pmatrix} c \begin{pmatrix} 0 & 0 \end{pmatrix} v \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} - u \end{pmatrix} = 1.$$

♦ Even if the hypothesis of Warfield's theorem is not fulfilled, a solution is clearly given by c = 0, v = (0 - 1), and $u = (0 - 1)^{T}$.

◊ This allows to remove a first identity block!

♦ From the explicit formulas, we get $X_1 \in GL_4(D)$ and $Y_{5,1} \in GL_8(D)$ so that we have the equivalence of matrices $L'_{5,1} = Y_{5,1}^{-1} L'_{5,1} X_1$.

 \diamond Similarly, we can remove a second identity block and we finally get:

Summary

♦ We have given constructive versions of Fitting and Warfield's theorems.

 \diamond Explicit formulas for all unimodular matrices providing the equivalences are given in terms of the matrices defining the *D*-module isomorphism.

◊ Concerning Warfield's theorem, the method relies on the resolution of a "stable rank" equation.

◊ We have an implementation of all the algorithms in Maple. It uses heuristics for solving the "stable rank" equations which allow to treat many examples.

Summary

♦ We have given constructive versions of Fitting and Warfield's theorems.

 \diamond Explicit formulas for all unimodular matrices providing the equivalences are given in terms of the matrices defining the *D*-module isomorphism.

◊ Concerning Warfield's theorem, the method relies on the resolution of a "stable rank" equation.

◊ We have an implementation of all the algorithms in Maple. It uses heuristics for solving the "stable rank" equations which allow to treat many examples.

Thank you for your attention!