Presenting isomorphic finitely presented modules by equivalent matrices: a constructive approach

Thomas Cluzeau

University of Limoges, XLIM

Université de Limoges xlim

In collaboration with C. Chenavier (Univ. Limoges - XLIM) and A. Quadrat (Inria Paris)

Journées du GDR EFI 2021

Linear systems and finitely presented left D-modules

$\diamond D$ ring of functional operators, $R \in D^{q \times p}$, and \mathcal{F} a left D-module
\diamond Consider the linear system $\operatorname{ker}_{\mathcal{F}}(R)=.\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}$.
\diamond We associate the following finitely presented left D-module:

$$
M=D^{1 \times p} /\left(D^{1 \times q} R\right)
$$

given by the finite presentation:

$$
\lambda=\left(\begin{array}{ccc}
D^{1 \times q} & \xrightarrow{. R} D^{1 \times p} \quad \xrightarrow{\pi} M \quad M \quad 0, \\
\left(\lambda_{1}, \ldots, \lambda_{q}\right) & \longmapsto & \lambda R
\end{array}\right.
$$

\diamond Malgrange's isomorphism: $\operatorname{ker}_{\mathcal{F}}(R.) \cong \operatorname{hom}_{D}(M, \mathcal{F})$
\diamond Algebraic analysis: the linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) can be studied by means$ of the finitely presented left D-module M.

Example in the theory of linear elasticity (Pommaret'01)
$\diamond(S)\left\{\begin{array}{l}\partial_{1} \xi_{1}=0, \\ \frac{1}{2}\left(\partial_{2} \xi_{1}+\partial_{1} \xi_{2}\right)=0, \\ \partial_{2} \xi_{2}=0 .\end{array}\right.$
$\left(S^{\prime}\right) \begin{cases}\partial_{1} \zeta_{1}=0, & \partial_{2} \zeta_{1}-\zeta_{2}=0, \\ \partial_{1} \zeta_{2}=0, & \partial_{1} \zeta_{3}+\zeta_{2}=0, \\ \partial_{2} \zeta_{3}=0, & \partial_{2} \zeta_{2}=0 .\end{cases}$
\diamond We consider the ring $D=\mathbb{Q}\left[\partial_{1}, \partial_{2}\right]$ and we have

$$
(S) \Leftrightarrow \overbrace{\left(\begin{array}{cc}
\partial_{1} & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} \\
0 & \partial_{2}
\end{array}\right)}^{R}\binom{\xi_{1}}{\xi_{2}}=0,\left(S^{\prime}\right) \Leftrightarrow \overbrace{\left(\begin{array}{ccc}
\partial_{1} & 0 & 0 \\
\partial_{2} & -1 & 0 \\
0 & \partial_{1} & 0 \\
0 & 1 & \partial_{1} \\
0 & 0 & \partial_{2} \\
0 & \partial_{2} & 0
\end{array}\right)}^{R^{\prime}}\left(\begin{array}{l}
\zeta_{1} \\
\zeta_{2} \\
\zeta_{3}
\end{array}\right)=0 .
$$

\diamond We associate $M=D^{1 \times 2} /\left(D^{1 \times 3} R\right)$ and $M^{\prime}=D^{1 \times 3} /\left(D^{1 \times 6} R^{\prime}\right)$.

Two theorems about isomorphisms and equivalences

Theorem (Fitting, 1936)
Two matrices $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ presenting isomorphic left D-modules can be inflated with blocks of 0 and I to get equivalent matrices presenting the same left D-modules.

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

$$
\begin{aligned}
& s \leq \min \left(p+q^{\prime}, q+p^{\prime}\right), \quad \operatorname{sr}(D) \leq \max \left(p+q^{\prime}-s, q+p^{\prime}-s\right), \\
& r \leq \min \left(p, p^{\prime}\right), \quad \operatorname{sr}(D) \leq \max \left(p-r, p^{\prime}-r\right),
\end{aligned}
$$

then we can remove s blocks of zeros and r blocks of identity.
\diamond Goal of the talk: give constructive versions of both theorems

Example in the theory of linear elasticity

\diamond We will prove that $M=D^{1 \times 2} /\left(D^{1 \times 3} R\right) \cong M^{\prime}=D^{1 \times 3} /\left(D^{1 \times 6} R^{\prime}\right)$.
\diamond Constructive version of Fitting's theorem: compute $X \in \mathrm{GL}_{5}(D)$ and $Y \in \mathrm{GL}_{14}(D)$ such that:

$$
\left(\begin{array}{cc:ccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & \partial_{1} & 0 & 0 \\
0 & 0 & \partial_{2} & -1 & 0 \\
0 & 0 & 0 & \partial_{1} & 0 \\
0 & 0 & 0 & 1 & \partial_{1} \\
0 & 0 & 0 & 0 & \partial_{2} \\
0 & 0 & 0 & \partial_{2} & 0
\end{array}\right)=Y^{-1}\left(\begin{array}{cc|ccc}
\partial_{1} & 0 & 0 & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & 0 & 0 \\
0 & \partial_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) X .
$$

Example in the theory of linear elasticity

\diamond Constructive version of Warfield's theorem (slight generalization): compute $X^{\prime} \in \mathrm{GL}_{3}(D)$ and $Y^{\prime} \in \mathrm{GL}_{7}(D)$ such that:

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
\hline \partial_{1} & 0 & 0 \\
\partial_{2} & -1 & 0 \\
0 & \partial_{1} & 0 \\
0 & 1 & \partial_{1} \\
0 & 0 & \partial_{2} \\
0 & \partial_{2} & 0
\end{array}\right)=Y^{\prime-1}\left(\begin{array}{cc|c}
\partial_{1} & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 \\
0 & \partial_{2} & 0 \\
\hline 0 & 0 & 1 \\
\hline 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) X^{\prime} .
$$

Part I

Definition of isomorphic finitely presented left D-modules in terms of matrix equalities

Homomorphisms in terms of matrix equality

\diamond Let D be a ring of functional operators.
\diamond Let $R \in D^{q \times p}, \quad R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ be two matrices.
\diamond We have the following commutative exact diagram:

$$
\begin{aligned}
& \begin{array}{rccccc}
D^{1 \times q} & \xrightarrow{. R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
\downarrow \cdot Q & & \downarrow . P & & \downarrow f & \\
D^{1 \times q^{\prime}} & \xrightarrow{\cdot R^{\prime}} & D^{1 \times p^{\prime}} & \xrightarrow{\pi^{\prime}} & M^{\prime} & \longrightarrow 0 .
\end{array} \\
& \exists f: M \rightarrow M^{\prime} \Longleftrightarrow \exists P \in D^{p \times p^{\prime}}, Q \in D^{q \times q^{\prime}} \text { such that: } \\
& R P=Q R^{\prime} .
\end{aligned}
$$

Moreover, we have $f(\pi(\lambda))=\pi^{\prime}(\lambda P)$, for all $\lambda \in D^{1 \times p}$.

Isomorphisms in terms of matrix equalities

$\diamond f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ given by P and Q such that $R P=Q R^{\prime}$.
$\diamond f \in \operatorname{iso}_{D}\left(M, M^{\prime}\right)$ if and only if there exist $P^{\prime} \in D^{p^{\prime} \times p}, Q^{\prime} \in D^{q^{\prime} \times q}$, $Z \in D^{p \times q}$ and $Z^{\prime} \in D^{p^{\prime} \times q^{\prime}}$ satisfying the following relations:

$$
R^{\prime} P^{\prime}=Q^{\prime} R, \quad P P^{\prime}+Z R=I_{p}, \quad P^{\prime} P+Z^{\prime} R^{\prime}=I_{p^{\prime}} .
$$

Then, there exist $Z_{2} \in D^{q \times r}$ and $Z_{2}^{\prime} \in D^{q^{\prime} \times r^{\prime}}$ such that:

$$
Q Q^{\prime}+R Z+Z_{2} R_{2}=I_{q}, \quad Q^{\prime} Q+R^{\prime} Z^{\prime}+Z_{2}^{\prime} R_{2}^{\prime}=I_{q^{\prime}}
$$

where $^{\operatorname{ker}_{D}(. R)}=D^{1 \times r} R_{2}$ and $\operatorname{ker}_{D}\left(. R^{\prime}\right)=D^{1 \times r^{\prime}} R_{2}^{\prime}$.

Implementations

\diamond All the matrices appearing in the relations defining (iso)morphisms can be computed from R and R^{\prime} using (non-commutative) Gröbner basis calculations.
\diamond Implementations:
(1) Maple package OreMorphisms (C.Q.) based on OreModules (Chyzak, Q., Robertz);
(2) Mathematica package OreAlgebraicAnalysis (C., Q., Tõnso) based on HolonomicFunctions (Koutschan);
(3) CapAndHomalg (Barakat et al).

Example in the theory of linear elasticity

\diamond We have $R P=Q R^{\prime}$ with:

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), Q=\frac{1}{2}\left(\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0
\end{array}\right) .
$$

\diamond We have $R^{\prime} P^{\prime}=Q^{\prime} R, P P^{\prime}+Z R=I_{p}$, and $P^{\prime} P+Z^{\prime} R^{\prime}=I_{p^{\prime}}$ with:

$$
\begin{gathered}
P^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
\partial_{2} & 0 \\
0 & 1
\end{array}\right), \quad Q^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
\partial_{2} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 2 \partial_{2} & -\partial_{1}
\end{array}\right), \\
Z=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Z^{\prime}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

\diamond This proves that $M=D^{1 \times 2} /\left(D^{1 \times 3} R\right) \cong M^{\prime}=D^{1 \times 3} /\left(D^{1 \times 6} R^{\prime}\right)$.

Part II

Constructive version of Fitting's theorem

Statement of the problem

\diamond Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$.
\diamond Assume that $M \cong M^{\prime}$

Theorem (Fitting, 1936)

Two matrices $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ presenting isomorphic left D-modules can be inflated with blocks of 0 and I to get equivalent matrices presenting the same left D-modules.
\diamond Goal: Compute inflations L and L^{\prime} of R and R^{\prime} with blocks of 0 and I and two unimodular matrices X and Y such that:

- L and L^{\prime} respectively define a finite presentation of M and M^{\prime};
- L and L^{\prime} are equivalent matrices, i.e., we have $L^{\prime}=Y^{-1} L X$.
\diamond We give explicit formulas for X and Y in terms of the matrices defining the isomorphism.

Explicit Fitting's theorem

\diamond Let $\left\{\begin{array}{l}n=q+p^{\prime}+p+q^{\prime} \\ m=p+p^{\prime}\end{array}\right.$ and define the matrices:
(1)

$$
X=\left(\begin{array}{cc}
I_{p} & P \\
-P^{\prime} & I_{p^{\prime}}-P^{\prime} P
\end{array}\right) \in \mathrm{GL}_{m}(D), \quad X^{-1}=\left(\begin{array}{cc}
I_{p}-P P^{\prime} & -P \\
P^{\prime} & I_{p^{\prime}}
\end{array}\right)
$$

(2)

$$
Y=\left(\begin{array}{cccc}
I_{q} & 0 & R & Q \\
0 & I_{p^{\prime}} & -P^{\prime} & Z^{\prime} \\
-Z & P & 0 & P Z^{\prime}-Z Q \\
-Q^{\prime} & -R^{\prime} & 0 & Z_{2}^{\prime} R_{2}^{\prime}
\end{array}\right) \in \operatorname{GL}_{n}(D)
$$

with inverse given by

$$
Y^{-1}=\left(\begin{array}{cccc}
Z_{2} R_{2} & 0 & -R & -Q \\
P^{\prime} Z-Z^{\prime} Q^{\prime} & 0 & P^{\prime} & -Z^{\prime} \\
Z & -P & I_{p} & 0 \\
Q^{\prime} & R^{\prime} & 0 & I_{q^{\prime}}
\end{array}\right)
$$

Explicit Fitting's theorem
\diamond Let $L=\left(\begin{array}{cc}R & 0 \\ 0 & I_{p^{\prime}} \\ 0 & 0 \\ 0 & 0\end{array}\right) \in D^{n \times m}, \quad L^{\prime}=\left(\begin{array}{cc}0 & 0 \\ 0 & 0 \\ I_{p} & 0 \\ 0 & R^{\prime}\end{array}\right) \in D^{n \times m}$.
\diamond The following commutative exact diagram holds:
and L and L^{\prime} are equivalent matrices, i.e.,

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
I_{p} & 0 \\
0 & R^{\prime}
\end{array}\right)=Y^{-1}\left(\begin{array}{cc}
R & 0 \\
0 & I_{p^{\prime}} \\
0 & 0 \\
0 & 0
\end{array}\right) X .
$$

Example in the theory of 2D linear elasticity

\diamond We get

$$
\left(\begin{array}{cc:ccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & \partial_{1} & 0 & 0 \\
0 & 0 & \partial_{2} & -1 & 0 \\
0 & 0 & 0 & \partial_{1} & 0 \\
0 & 0 & 0 & 1 & \partial_{1} \\
0 & 0 & 0 & 0 & \partial_{2} \\
0 & 0 & 0 & \partial_{2} & 0
\end{array}\right)=Y^{-1}\left(\begin{array}{cc|ccc}
\partial_{1} & 0 & 0 & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & 0 & 0 \\
0 & \partial_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) X .
$$

Example in the theory of 2D linear elasticity
 $\diamond X \in \mathrm{GL}_{5}(D)$ and $Y \in \mathrm{GL}_{14}(D)$ are given by:

$$
\begin{aligned}
& X=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & -\partial_{2} & 1 & 0 \\
0 & -1 & 0 & 0 & 0
\end{array}\right), \\
& Y=\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \partial_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & \partial_{2} & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\partial_{2} & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -\partial_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\partial_{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\partial_{2} & 0 & 0 & 0 & -\partial_{1} & 0 & 0 & 0 & -\partial_{2} & \partial_{1} & 1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & -1 & -\partial_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -\partial_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 \partial_{2} & \partial_{1} & 0 & -\partial_{2} & 0 & 0 & 0 & 0 & 0 & 0 & -\partial_{2} & \partial_{1} & 1
\end{array}\right)
\end{aligned}
$$

Part III

Constructive version of Warfield's theorem

Statement of the problem

\diamond Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right) \cong M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$.
\diamond Assume that $L^{\prime}=Y^{-1} L X$ as before (Fitting's theorem).

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

$$
\begin{aligned}
& s \leq \min \left(p+q^{\prime}, q+p^{\prime}\right), \quad \operatorname{sr}(D) \leq \max \left(p+q^{\prime}-s, q+p^{\prime}-s\right), \\
& r \leq \min \left(p, p^{\prime}\right), \quad \operatorname{sr}(D) \leq \max \left(p-r, p^{\prime}-r\right),
\end{aligned}
$$

then we can remove s blocks of zeros and r blocks of identity.
\diamond Goal: Compute $X_{r} \in \mathrm{GL}_{m-r}(D)$ and $Y_{s, r} \in \mathrm{GL}_{n-s-r}(D)$ such that:

$$
\left(\begin{array}{cc}
0 & 0 \\
I_{p-r} & 0 \\
0 & R^{\prime}
\end{array}\right)=Y_{s, r}^{-1}\left(\begin{array}{cc}
R & 0 \\
0 & I_{p^{\prime}-r} \\
0 & 0
\end{array}\right) X_{r}
$$

Stable rank of a ring D

Definitions (e.g., McConnell \& Robson)

(1) $u \in D^{n}$ is unimodular if $\exists v \in D^{1 \times n}$ such that $v u=1$.
(2) $u=\left(u_{1}, \ldots, u_{n}\right)^{T} \in D^{n}$ is stable if $\exists d_{1}, \ldots, d_{n-1} \in D$ such that $\left(u_{1}+d_{1} u_{n}, \ldots, u_{n-1}+d_{n-1} u_{n}\right)^{T} \in D^{n-1}$ is unimodular.
(3) An integer r is said to be in the stable range of D if $\forall n>r, a$ unimodular vector $u \in D^{n}$ is stable.
(9) The stable rank $\operatorname{sr}(D)$ of D is the smallest positive integer that is in the stable range of D. If no such integer exists, then $\operatorname{sr}(D)=+\infty$.
\diamond Examples:
(1) If D is a principal domain, then $\operatorname{sr}(D) \geq 2$;
(2) $\forall n \geq 1$, we have $\operatorname{sr}\left(\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]\right)=n+1$ (Vasershtein'71);
(3) $\operatorname{sr}\left(A_{n}(k)\right)=2$ and $\operatorname{sr}\left(B_{n}(k)\right)=2$ (Stafford's theorem - Stafford'78).

A key result based on $\operatorname{sr}(D)$

Lemma

Let D be a ring and n, m two integers such that $\operatorname{sr}(D) \leq m$. Let $u \in D^{n+m+1}$ be a unimodular column vector such that we have:

$$
v u=\left(\begin{array}{ll}
v_{n} & v_{m+1}
\end{array}\right)\left(\begin{array}{l}
u_{n} \\
u_{m} \\
u_{1}
\end{array}\right)=1,
$$

where $v_{n} \in D^{1 \times n}, v_{m+1} \in D^{1 \times(m+1)}, u_{n} \in D^{n}, u_{m} \in D^{m}, u_{1} \in D$. Then, there exist $c_{1} \in D, \tilde{u}_{m} \in D^{m}, \tilde{v}_{m} \in D^{1 \times m}$ such that we have:

$$
\left(\begin{array}{ll}
c_{1} v_{n} & \tilde{v}_{m}
\end{array}\right)\binom{u_{n}}{u_{m}+\tilde{u}_{m} u_{1}}=1
$$

\diamond No general algorithm for computing c_{1}, \tilde{u}_{m}, and \tilde{v}_{m} in any ring D.
\diamond But algorithms and heuristics are implemented for some particular rings
D (as for instance Weyl algebras) and allow to treat examples.

An iterative process

\diamond Starting point: $X \in \operatorname{GL}_{m}(D)$ and $Y \in \operatorname{GL}_{n}(D)$ such that $L^{\prime}=Y^{-1} L X$.
\diamond We assume that s and r satisfy the hypothesis of Warfield's theorem.
\diamond Remove s zeros rows: From $Y_{0}:=Y$, we compute recursively matrices Y_{1}, \ldots, Y_{s} such that: $\forall i=1, \ldots, s$,

$$
Y_{i} \in \mathrm{GL}_{n-i}(D), \underbrace{\left(\begin{array}{cc}
0 & 0 \\
I_{p} & 0 \\
0 & R^{\prime}
\end{array}\right)}_{L_{i}^{\prime} \in D^{(n-i)} \times m}=Y_{i}^{-1} \underbrace{\left(\begin{array}{cc}
R & 0 \\
0 & I_{p^{\prime}} \\
0 & 0
\end{array}\right)}_{L_{i} \in D^{(n-i) \times m}} X
$$

\diamond Remove r identity blocks: From $Y_{s, 0}:=Y_{s}$ and $X_{0}:=X$, we compute recursively $Y_{s, 1}, \ldots, Y_{s, r}$ and X_{1}, \ldots, X_{r} such that: $\forall j=1, \ldots, r$,

$$
Y_{s, j} \in \mathrm{GL}_{n-s-j}(D), X_{j} \in \mathrm{GL}_{m-j}(D), \underbrace{\left(\begin{array}{cc}
0 & 0 \\
I_{p-j} & 0 \\
0 & R^{\prime}
\end{array}\right)}_{L_{s, j} \in D^{(n-s-j) \times(m-j)}}=Y_{s, j}^{-1} \underbrace{\left(\begin{array}{cc}
R & 0 \\
0 & I_{p^{\prime}-j} \\
0 & 0
\end{array}\right)}_{L_{s, j} \in D^{(n-s-j) \times(m-j)}} X_{j} .
$$

Procedure to remove zero rows: general description

$\diamond \underline{\text { Hyp.: }}$ we have computed $Y_{i-1} \in \mathrm{GL}_{n-i+1}(D)$ s.t. $L_{i-1}^{\prime}=Y_{i-1}^{-1} L_{i-1} X$.

$D^{1 \times(n-i)}$	$\xrightarrow{. L_{i}^{\prime}}$	$D^{1 \times m}$
$\uparrow . G_{i}^{\prime}$		$\uparrow . I_{m}$
$D^{1 \times(n-i+1)}$	$\xrightarrow{. L_{i-1}^{\prime}}$	$D^{1 \times m}$
$\uparrow . Y_{i-1}$		$\uparrow . X$
$D^{1 \times(n-i+1)}$	$\xrightarrow{. L_{i-1}}$	$D^{1 \times m}$
$\uparrow . W_{i}$		$\uparrow . I_{m}$
$D^{1 \times(n-i+1)}$	$\xrightarrow{. L_{i-1}}$	$D^{1 \times m}$
$\uparrow . H_{i}$		$\uparrow . I_{m}$
$D^{1 \times(n-i)}$	$\xrightarrow{. L_{i}}$	$D^{1 \times m}$

$$
\Longrightarrow L_{i} X=\underbrace{\left(H_{i} W_{i} Y_{i-1} G_{i}^{\prime}\right)}_{Y_{i} \in \mathrm{GL}_{n-i}(D)} L_{i-1}, \quad Y_{i}^{-1}=H_{i}^{\prime} Y_{i-1}^{-1} W_{i}^{-1} G_{i}
$$

Procedure to remove zero rows: matrix computations

\diamond We decompose Y_{i-1} and its inverse Y_{i-1}^{-1} by blocks as follows:

$$
Y_{i-1}=\left(\begin{array}{l}
Y_{11} \\
Y_{21} \\
Y_{31}
\end{array}\right) \stackrel{\leftarrow q+p^{\prime}}{\leftarrow p+q^{\prime}-i} \underset{\leftarrow 1}{\leftarrow}
$$

$$
\left.Y_{i-1}^{-1}=\begin{array}{ccc}
q+p^{\prime} & & 1 \\
\downarrow & & \downarrow \\
Y_{11}^{\prime} & Y_{12}^{\prime} & Y_{13}^{\prime}
\end{array}\right)
$$

\diamond As $\operatorname{sr}(D) \leq p+q^{\prime}-s$, the key lemma implies that there exist $c \in D$, $u \in D^{p+q^{\prime}-i}, v \in D^{1 \times\left(p+q^{\prime}-i\right)}$ such that, if $k=q+p^{\prime}-(i-1)$, then

$$
\left(c\left(Y_{11}^{\prime}\right)_{k .} \quad v\right)\binom{\left(Y_{11}\right)_{. k}}{\left(Y_{21}\right)_{. k}+u\left(Y_{31}\right)_{k}}=1
$$

\diamond Assume $c \in D, u \in D^{p+q^{\prime}-i}, v \in D^{1 \times\left(p+q^{\prime}-i\right)}$ have been computed.

Procedure to remove zero rows: matrix computations

$\diamond W_{i}=\left(\begin{array}{ccc}I_{q+p^{\prime}} & 0 & 0 \\ 0 & I_{p+q^{\prime}-i} & u \\ 0 & 0 & 1\end{array}\right) \in \mathrm{GL}_{n-i+1}(D) \rightsquigarrow$ commuting square diagram:

$$
\begin{array}{clc}
D^{1 \times(n-i+1)} & \xrightarrow{. L_{i-1}} & D^{1 \times m} \\
W_{i}^{-1} \downarrow \uparrow . W_{i} & & . I_{m} \downarrow \uparrow . I_{m} \\
D^{1 \times(n-i+1)} & \xrightarrow{. L_{i-1}} & D^{1 \times m}
\end{array}
$$

\diamond Let $\tilde{\ell}_{i}=\left(\begin{array}{lll}c\left(Y_{11}^{\prime}\right)_{k .} & v\end{array}\right), \ell_{i}=\left(\begin{array}{c}c\left(Y_{11}^{\prime}\right)_{k .} \\ \end{array} \quad v \quad 0\right), F_{i}=\binom{Y_{11}}{Y_{21}+u Y_{31}}$.

Procedure to remove zero rows: matrix computations

$\diamond G_{i}=\binom{I_{n-i}-\left(F_{i}\right) \cdot k \tilde{\ell}_{i}}{\tilde{\ell}_{i}}, H_{i}=\left(I_{n-i}-\left(F_{i}\right) \cdot k \tilde{\ell}_{i} \quad\left(F_{i}\right) \cdot k\right)$ satisfy $H_{i} G_{i}=I_{n-i}$
and the following square diagrams commutes:

$$
\begin{array}{ccc}
D^{1 \times(n-i+1)} & \xrightarrow{L_{i-1}} & D^{1 \times m} \\
\uparrow . H_{i} & & \uparrow . I_{m} \\
D^{1 \times(n-i)} & \xrightarrow{. L_{i}} & D^{1 \times m}
\end{array}
$$

$\diamond G_{i}^{\prime}=\left(I_{n-i+1}-\left(f_{k}^{n-i+1}\right)^{T} \ell_{i} W_{i} Y_{i-1}\right)\left(\begin{array}{cc}I_{k-1} & 0 \\ 0 & 0 \\ 0 & I_{p+q^{\prime}}\end{array}\right), H_{i}^{\prime}=\left(\begin{array}{ccc}I_{k-1} & 0 & 0 \\ 0 & 0 & I_{p+q^{\prime}}\end{array}\right)$,
satisfy $H_{i}^{\prime} G_{i}^{\prime}=I_{n-i}$ and the following square diagrams commutes:

$$
\begin{array}{ccc}
\left.D_{1 \times(n-i)}^{1 \times(}\right) & \xrightarrow{. L_{i}^{\prime}} & \begin{array}{c}
D^{1 \times m} \\
\uparrow . G_{i}^{\prime}
\end{array} \\
D^{1 \times(n-i+1)} & \xrightarrow{. L_{i-1}^{\prime}} & \begin{array}{l}
\text { } . I_{m}
\end{array} \\
D^{1 \times m}
\end{array}
$$

Procedure to remove zero rows: matrix computations

$\diamond Y_{i}=H_{i} W_{i} Y_{i-1} G_{i}^{\prime} \in \mathrm{GL}_{n-i}(D)$ with inverse $Y_{i}^{-1}=H_{i}^{\prime} Y_{i-1}^{-1} W_{i}^{-1} G_{i}$.
\diamond The following commutative exact diagram holds

and L_{i} and L_{i}^{\prime} are equivalent matrices.
\diamond Matrices given explicitly in terms of those of the previous equivalence.
Problem reduced to computing $c \in D, u \in D^{p+q^{\prime}-i}, v \in D^{1 \times\left(p+q^{\prime}-i\right)}$ s.t.:

$$
\left(c\left(Y_{11}^{\prime}\right)_{k .} \quad v\right)\binom{\left(Y_{11}\right)_{. k}}{\left(Y_{21}\right)_{. k}+u\left(Y_{31}\right)_{k}}=1 .
$$

Example in the theory of 2D linear elasticity

\diamond We have $q=3, p=2, q^{\prime}=6$, and $p^{\prime}=3$ so that $n=14$ and $m=5$.
\diamond We have $q+p^{\prime}=6 \leq p+q^{\prime}=8$, and $\operatorname{sr}\left(\mathbb{Q}\left[\partial_{1}, \partial_{2}\right]\right)=3$.
\diamond The integer s has to satisfy:
$s \leq \min \left(p+q^{\prime}, q+p^{\prime}\right)=6, \operatorname{sr}(D) \leq \max \left(p+q^{\prime}-s, q+p^{\prime}-s\right)=8-s$,
\Longrightarrow We can remove $s=5$ zero rows.

Example in the theory of 2D linear elasticity

\diamond To remove the first zero row, we are reduced to solving:

\diamond A solution is given by $c=0, v=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right)$, and $u=(0000000)^{T}$

Example in the theory of 2D linear elasticity

\diamond From the above formulas, we get $Y_{1} \in \mathrm{GL}_{13}(D)$ s.t. $L_{1}^{\prime}=Y_{1}^{-1} L_{1}^{\prime} X$.
\diamond Applying recursion, we compute $Y_{i} \in \mathrm{GL}_{14-i}(D), i=2, \ldots, 5$ so that we finally get:

Procedure to remove identity blocks: general description

 $\diamond \underline{\text { Hyp.: }}$ we have computed $Y_{s, j-1} \in \mathrm{GL}_{n-s-j+1}(D), X_{j-1} \in \mathrm{GL}_{m-j+1}(D)$ satisfying $L_{s, j-1}^{\prime}=Y_{s, j-1}^{-1} L_{s, j-1} X_{j-1}$.$$
\begin{array}{clc|}
\hline D^{1 \times(n-s-j)} & \xrightarrow{. L_{s, j}^{\prime}} & \begin{array}{c}
D^{1 \times(m-j)} \\
\uparrow . G_{1, j}^{\prime}
\end{array} \\
& & \uparrow . G_{2, j}^{\prime} \\
D^{1 \times(n-s-j+1)} \\
\uparrow . Y_{s, j-1} & \xrightarrow{. L_{s, j-1}^{\prime}} & \\
D^{1 \times(m-j+1)} \\
D^{1 \times(n-s-j+1)} & & \xrightarrow{. L_{s, j-1}} \\
\uparrow . W_{1, j} & & D^{1 \times(m-j+1)} \\
D^{1 \times(n-s-j+1)} & \xrightarrow{. L_{s, j-1}} & D^{1 \times(m-j+1)} \\
\uparrow . H_{1, j} & & \uparrow . H_{2, j} \\
D^{1 \times(n-s-j)} & \xrightarrow{. L_{s, j}} & D^{1 \times(m-j)}
\end{array}
$$

$$
\Longrightarrow L_{s, j} \underbrace{\left(H_{2, j} W_{2, j} X_{j-1} G_{2, j}^{\prime}\right)}_{X_{j} \in \mathrm{GL}_{m-j}(D)}=\underbrace{\left(H_{1, j} W_{1, j} Y_{s, j-1} G_{1, j}^{\prime}\right)}_{Y_{s, j} \in \mathrm{GL}_{n-s-i}(D)} L_{s, j}^{\prime}
$$

Procedure to remove identity blocks: matrix computations

\diamond The process is the same as for removing zero rows:
(1) We decompose $Y_{s, j-1}, X_{j-1}$, and their inverses by blocks;
(2) The key lemma and the assumption $\operatorname{sr}(D) \leq p^{\prime}-r$ implies that there exist $c \in D, u \in D^{p^{\prime}-j}$, and $v \in D^{1 \times\left(p^{\prime}-j\right)}$ s.t., if $k_{2}=p-j+1$,

$$
\left(\begin{array}{cc}
c\left(X_{11}^{\prime}\right)_{k_{2} .} & v
\end{array}\right)\binom{\left(X_{11}\right)_{k_{2}}}{\left(X_{21}\right)_{\cdot k_{2}}+u\left(X_{31}\right)_{k_{2}}}=1 ;
$$

(3) Explicit formulas for all the matrices are then obtained in terms of a solution $c \in D, u \in D^{p^{\prime}-j}$, and $v \in D^{1 \times\left(p^{\prime}-j\right)}$.

Example in the theory of 2D linear elasticity

\diamond We have $q=3, p=2, q^{\prime}=6$, and $p^{\prime}=3$ so that $n=14$ and $m=5$.
\diamond We have $\operatorname{sr}\left(\mathbb{Q}\left[\partial_{1}, \partial_{2}\right]\right)=3$.
\diamond The positive integer r has to satisfy:

$$
r \leq \min \left(p, p^{\prime}\right)=2, \quad \operatorname{sr}(D) \leq \max \left(p-r, p^{\prime}-r\right)=3-r
$$

\Longrightarrow No positive integer r satisfies the hypothesis of Warfield's theorem.

Example in the theory of 2D linear elasticity

\diamond We have $q=3, p=2, q^{\prime}=6$, and $p^{\prime}=3$ so that $n=14$ and $m=5$.
\diamond We have $\operatorname{sr}\left(\mathbb{Q}\left[\partial_{1}, \partial_{2}\right]\right)=3$.
\diamond The positive integer r has to satisfy:

$$
r \leq \min \left(p, p^{\prime}\right)=2, \quad \operatorname{sr}(D) \leq \max \left(p-r, p^{\prime}-r\right)=3-r
$$

\Longrightarrow No positive integer r satisfies the hypothesis of Warfield's theorem.
\diamond But, in the above process, the condition on r is just a sufficient condition for $\left(c\left(X_{11}^{\prime}\right)_{k_{2}} . \quad v\right)\binom{\left(X_{11}\right)_{k_{2}}}{\left(X_{21}\right)_{k_{2}}+u\left(X_{31}\right)_{k_{2}}}=1$ to admit a solution!
\Rightarrow In some cases, such c, u, and v could exist without the hypothesis on r.

Example in the theory of 2D linear elasticity

\diamond Here, to remove the first identity block, we are reduced to solving:

$$
\left(\begin{array}{lll}
c\left(\begin{array}{ll}
0 & 0
\end{array}\right) & v
\end{array}\right)\binom{\binom{0}{1}}{\binom{0}{0}-u}=1
$$

\diamond Even if the hypothesis of Warfield's theorem is not fulfilled, a solution is clearly given by $c=0, v=\left(\begin{array}{ll}0 & -1\end{array}\right)$, and $u=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$.
\diamond This allows to remove a first identity block!

Example in the theory of 2D linear elasticity

\diamond From the explicit formulas, we get $X_{1} \in \mathrm{GL}_{4}(D)$ and $Y_{5,1} \in \mathrm{GL}_{8}(D)$ so that we have the equivalence of matrices $L_{5,1}^{\prime}=Y_{5,1}^{-1} L_{5,1}^{\prime} X_{1}$.
\diamond Similarly, we can remove a second identity block and we finally get:

$$
\underbrace{\left(\begin{array}{ccc}
0 & 0 & 0 \\
\hline \partial_{1} & 0 & 0 \\
\partial_{2} & -1 & 0 \\
0 & \partial_{1} & 0 \\
0 & 1 & \partial_{1} \\
0 & 0 & \partial_{2} \\
0 & \partial_{2} & 0
\end{array}\right)}_{L_{5,2}^{\prime}}=Y_{5,2}^{-1} \underbrace{\left(\begin{array}{ccc|c}
\partial_{1} & 0 & 0 \\
\frac{1}{2} \partial_{2} & \frac{1}{2} \partial_{1} & 0 \\
0 & \partial_{2} & 0 \\
\hline 0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)}_{L_{5,2}} X_{2}
$$

Summary

\diamond We have given constructive versions of Fitting and Warfield's theorems.
\diamond Explicit formulas for all unimodular matrices providing the equivalences are given in terms of the matrices defining the D-module isomorphism.
\diamond Concerning Warfield's theorem, the method relies on the resolution of a "stable rank" equation.
\diamond We have an implementation of all the algorithms in Maple. It uses heuristics for solving the "stable rank" equations which allow to treat many examples.

Summary

\diamond We have given constructive versions of Fitting and Warfield's theorems.
\diamond Explicit formulas for all unimodular matrices providing the equivalences are given in terms of the matrices defining the D-module isomorphism.
\diamond Concerning Warfield's theorem, the method relies on the resolution of a "stable rank" equation.
\diamond We have an implementation of all the algorithms in Maple. It uses heuristics for solving the "stable rank" equations which allow to treat many examples.

Thank you for your attention!

