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Linear systems and finitely presented left D-modules
� D ring of functional operators, R ∈ Dq×p, and F a left D-module

� Consider the linear system kerF (R.) = {η ∈ Fp | R η = 0}.

� We associate the following finitely presented left D-module:

M = D1×p/(D1×q R),

given by the finite presentation:

D1×q .R−→ D1×p π−→ M −→ 0,
λ = (λ1, . . . , λq) 7−→ λR

� Malgrange’s isomorphism: kerF (R.) ∼= homD(M,F)

� Algebraic analysis: the linear system kerF (R.) can be studied by means
of the finitely presented left D-module M.
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Example in the theory of linear elasticity (Pommaret’01)

� (S)


∂1 ξ1 = 0,
1
2 (∂2 ξ1 + ∂1 ξ2) = 0,

∂2 ξ2 = 0.

(S ′)


∂1 ζ1 = 0, ∂2 ζ1 − ζ2 = 0,

∂1 ζ2 = 0, ∂1 ζ3 + ζ2 = 0,

∂2 ζ3 = 0, ∂2 ζ2 = 0.

� We consider the ring D = Q[∂1, ∂2] and we have

(S)⇔

R︷ ︸︸ ︷ ∂1 0
1
2 ∂2

1
2 ∂1

0 ∂2

 (
ξ1
ξ2

)
= 0, (S ′)⇔

R′︷ ︸︸ ︷

∂1 0 0

∂2 −1 0

0 ∂1 0

0 1 ∂1

0 0 ∂2

0 ∂2 0



ζ1ζ2
ζ3

 = 0.

� We associate M = D1×2/(D1×3 R) and M ′ = D1×3/(D1×6 R ′).
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Two theorems about isomorphisms and equivalences

Theorem (Fitting, 1936)

Two matrices R ∈ Dq×p and R ′ ∈ Dq′×p′ presenting isomorphic left
D-modules can be inflated with blocks of 0 and I to get equivalent
matrices presenting the same left D-modules.

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

s ≤ min(p + q′, q + p′), sr(D) ≤ max(p + q′ − s, q + p′ − s),
r ≤ min(p, p′), sr(D) ≤ max(p − r , p′ − r),

then we can remove s blocks of zeros and r blocks of identity.

� Goal of the talk: give constructive versions of both theorems
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Example in the theory of linear elasticity

� We will prove that M = D1×2/(D1×3 R) ∼= M ′ = D1×3/(D1×6 R ′).

� Constructive version of Fitting’s theorem: compute X ∈ GL5(D) and
Y ∈ GL14(D) such that:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 ∂1 0 0

0 0 ∂2 −1 0

0 0 0 ∂1 0

0 0 0 1 ∂1

0 0 0 0 ∂2

0 0 0 ∂2 0



= Y−1



∂1 0 0 0 0

1
2
∂2

1
2
∂1 0 0 0

0 ∂2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



X .
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Example in the theory of linear elasticity

� Constructive version of Warfield’s theorem (slight generalization):
compute X ′ ∈ GL3(D) and Y ′ ∈ GL7(D) such that:

0 0 0

∂1 0 0

∂2 −1 0

0 ∂1 0

0 1 ∂1

0 0 ∂2

0 ∂2 0


= Y ′−1



∂1 0 0

1
2 ∂2

1
2 ∂1 0

0 ∂2 0

0 0 1

0 0 0

0 0 0

0 0 0


X ′.
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Part I

Definition of isomorphic finitely presented
left D-modules in terms of matrix

equalities
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Homomorphisms in terms of matrix equality

� Let D be a ring of functional operators.

� Let R ∈ Dq×p, R ′ ∈ Dq′×p′ be two matrices.

� We have the following commutative exact diagram:

D1×q .R−→ D1×p π−→ M −→ 0
↓ .Q ↓ .P ↓ f

D1×q′ .R′−−→ D1×p′ π′−→ M ′ −→ 0.

∃ f : M → M ′ ⇐⇒ ∃ P ∈ Dp×p′ , Q ∈ Dq×q′ such that:

R P = Q R ′.

Moreover, we have f (π(λ)) = π′(λP), for all λ ∈ D1×p.
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Isomorphisms in terms of matrix equalities

� f ∈ homD(M,M ′) given by P and Q such that R P = Q R ′.

� f ∈ isoD(M,M ′) if and only if there exist P ′ ∈ Dp′×p, Q ′ ∈ Dq′×q,
Z ∈ Dp×q and Z ′ ∈ Dp′×q′ satisfying the following relations:

R ′ P ′ = Q ′ R, P P ′ + Z R = Ip, P ′ P + Z ′ R ′ = Ip′ .

Then, there exist Z2 ∈ Dq×r and Z ′2 ∈ Dq′×r ′ such that:

Q Q ′ + R Z + Z2 R2 = Iq, Q ′Q + R ′ Z ′ + Z ′2 R
′
2 = Iq′ ,

where kerD(.R) = D1×r R2 and kerD(.R ′) = D1×r ′ R ′2.

Thomas Cluzeau (Univ. Limoges, XLIM) Isomorphisms and equivalences June 1, 2021 9 / 36



Implementations

� All the matrices appearing in the relations defining (iso)morphisms can
be computed from R and R ′ using (non-commutative) Gröbner basis
calculations.

� Implementations:

1 Maple package OreMorphisms (C.Q.) based on OreModules
(Chyzak, Q., Robertz);

2 Mathematica package OreAlgebraicAnalysis (C., Q., Tõnso)
based on HolonomicFunctions (Koutschan);

3 CapAndHomalg (Barakat et al).
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Example in the theory of linear elasticity

� We have R P = Q R ′ with:

P =

(
1 0 0
0 0 1

)
, Q =

1

2

 2 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 2 0

 .

� We have R ′ P ′ = Q ′ R, P P ′ + Z R = Ip, and P ′ P + Z ′ R ′ = Ip′ with:

P′ =


1 0

∂2 0

0 1

 , Q′ =



1 0 0

0 0 0

∂2 0 0

0 2 0

0 0 1

0 2 ∂2 −∂1


,

Z =

 0 0 0

0 0 0

 , Z ′ =


0 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

 .

� This proves that M = D1×2/(D1×3 R) ∼= M ′ = D1×3/(D1×6 R ′).
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Part II

Constructive version of Fitting’s theorem
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Statement of the problem

� Let M = D1×p/(D1×q R) and M ′ = D1×p′/(D1×q′ R ′).

� Assume that M ∼= M ′

Theorem (Fitting, 1936)

Two matrices R ∈ Dq×p and R ′ ∈ Dq′×p′ presenting isomorphic left
D-modules can be inflated with blocks of 0 and I to get equivalent
matrices presenting the same left D-modules.

� Goal: Compute inflations L and L′ of R and R ′ with blocks of 0 and I
and two unimodular matrices X and Y such that:

L and L′ respectively define a finite presentation of M and M ′;

L and L′ are equivalent matrices, i.e., we have L′ = Y−1 LX .

� We give explicit formulas for X and Y in terms of the matrices defining
the isomorphism.
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Explicit Fitting’s theorem

� Let

{
n = q + p′ + p + q′

m = p + p′
and define the matrices:

1

X =

(
Ip P

−P ′ Ip′ − P ′ P

)
∈ GLm(D), X−1 =

(
Ip − P P ′ −P

P ′ Ip′

)
.

2

Y =


Iq 0 R Q

0 Ip′ −P ′ Z ′

−Z P 0 P Z ′ − Z Q

−Q ′ −R ′ 0 Z ′2 R
′
2

 ∈ GLn(D),

with inverse given by

Y−1 =


Z2 R2 0 −R −Q

P ′ Z − Z ′Q ′ 0 P ′ −Z ′

Z −P Ip 0

Q ′ R ′ 0 Iq′

 .
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Explicit Fitting’s theorem

� Let L =


R 0

0 Ip′

0 0

0 0

 ∈ Dn×m, L′ =


0 0

0 0

Ip 0

0 R ′

 ∈ Dn×m.

� The following commutative exact diagram holds:

0 0 0
↓ ↓ ↓

D1×n .L−→ D1×m
π⊕ 0p′−−−−−→ M −→ 0

↓ .Y ↓ .X ↓ f

D1×n .L′−→ D1×m 0p ⊕π′−−−−−→M′ −→ 0
↓ ↓ ↓
0 0 0

and L and L′ are equivalent matrices, i.e.,
0 0

0 0

Ip 0

0 R ′

 = Y−1


R 0

0 Ip′

0 0

0 0

 X .
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Example in the theory of 2D linear elasticity

� We get 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 ∂1 0 0

0 0 ∂2 −1 0

0 0 0 ∂1 0

0 0 0 1 ∂1

0 0 0 0 ∂2

0 0 0 ∂2 0



= Y−1



∂1 0 0 0 0

1
2
∂2

1
2
∂1 0 0 0

0 ∂2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



X .
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Example in the theory of 2D linear elasticity
� X ∈ GL5(D) and Y ∈ GL14(D) are given by:

X =



1 0 1 0 0

0 1 0 0 1

−1 0 0 0 0

−∂2 0 −∂2 1 0

0 −1 0 0 0

 ,

Y =



1 0 0 0 0 0 ∂1 0 1 0 0 0 0 0

0 1 0 0 0 0 1
2
∂2

1
2
∂1 0 1

2
0 1

2
0 0

0 0 1 0 0 0 0 ∂2 0 0 0 0 1 0

0 0 0 1 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 0 −∂2 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

−1 0 0 −∂1 0 0 0 0 0 0 0 0 0 0

0 0 0 −∂2 1 0 0 0 0 0 0 0 0 0

−∂2 0 0 0 −∂1 0 0 0 −∂2 ∂1 1 0 0 0

0 −2 0 0 −1 −∂1 0 0 0 0 0 0 0 0

0 0 −1 0 0 −∂2 0 0 0 0 0 0 0 0

0 −2 ∂2 ∂1 0 −∂2 0 0 0 0 0 0 −∂2 ∂1 1



.
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Part III

Constructive version of Warfield’s theorem
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Statement of the problem
� Let M = D1×p/(D1×q R) ∼= M ′ = D1×p′/(D1×q′ R ′).

� Assume that L′ = Y−1 LX as before (Fitting’s theorem).

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

s ≤ min(p + q′, q + p′), sr(D) ≤ max(p + q′ − s, q + p′ − s),
r ≤ min(p, p′), sr(D) ≤ max(p − r , p′ − r),

then we can remove s blocks of zeros and r blocks of identity.

� Goal: Compute Xr ∈ GLm−r (D) and Ys,r ∈ GLn−s−r (D) such that: 0 0
Ip−r 0

0 R ′

 = Y−1s,r

R 0
0 Ip′−r
0 0

 Xr .
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Stable rank of a ring D

Definitions (e.g., McConnell & Robson)

1 u ∈ Dn is unimodular if ∃v ∈ D1×n such that v u = 1.

2 u = (u1, . . . , un)T ∈ Dn is stable if ∃d1, . . . , dn−1 ∈ D such that
(u1 + d1 un, . . . , un−1 + dn−1 un)T ∈ Dn−1 is unimodular.

3 An integer r is said to be in the stable range of D if ∀n > r , a
unimodular vector u ∈ Dn is stable.

4 The stable rank sr(D) of D is the smallest positive integer that is in
the stable range of D. If no such integer exists, then sr(D) = +∞.

� Examples:

1 If D is a principal domain, then sr(D) ≥ 2;

2 ∀n ≥ 1, we have sr(Q[x1, . . . , xn]) = n + 1 (Vasershtein’71);

3 sr(An(k)) = 2 and sr(Bn(k)) = 2 (Stafford’s theorem - Stafford’78).
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A key result based on sr(D)

Lemma

Let D be a ring and n, m two integers such that sr(D) ≤ m.
Let u ∈ Dn+m+1 be a unimodular column vector such that we have:

v u =
(
vn vm+1

)un
um
u1

 = 1,

where vn ∈ D1×n, vm+1 ∈ D1×(m+1), un ∈ Dn, um ∈ Dm, u1 ∈ D.
Then, there exist c1 ∈ D, ũm ∈ Dm, ṽm ∈ D1×m such that we have:

(
c1 vn ṽm

)( un
um + ũm u1

)
= 1.

� No general algorithm for computing c1, ũm, and ṽm in any ring D.

� But algorithms and heuristics are implemented for some particular rings
D (as for instance Weyl algebras) and allow to treat examples.
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An iterative process
� Starting point: X ∈ GLm(D) and Y ∈ GLn(D) such that L′ = Y−1 LX .

� We assume that s and r satisfy the hypothesis of Warfield’s theorem.

� Remove s zeros rows: From Y0 := Y , we compute recursively matrices
Y1, . . . ,Ys such that: ∀i = 1, . . . , s,

Yi ∈ GLn−i (D),

0 0
Ip 0
0 R ′


︸ ︷︷ ︸
L′i∈D(n−i)×m

= Y−1i

R 0
0 Ip′
0 0


︸ ︷︷ ︸
Li∈D(n−i)×m

X .

� Remove r identity blocks: From Ys,0 := Ys and X0 := X , we compute
recursively Ys,1, . . . ,Ys,r and X1, . . . ,Xr such that: ∀j = 1, . . . , r ,

Ys,j ∈ GLn−s−j(D), Xj ∈ GLm−j(D),

 0 0
Ip−j 0

0 R ′


︸ ︷︷ ︸

L′s,j∈D(n−s−j)×(m−j)

= Y−1s,j

R 0
0 Ip′−j
0 0


︸ ︷︷ ︸

Ls,j∈D(n−s−j)×(m−j)

Xj .
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Procedure to remove zero rows: general description
� Hyp.: we have computed Yi−1 ∈ GLn−i+1(D) s.t. L′i−1 = Y−1i−1 Li−1 X .

D1×(n−i) .L′i−→ D1×m

↑ .G ′i ↑ .Im

D1×(n−i+1)
.L′i−1−−−→ D1×m

↑ .Yi−1 ↑ .X
D1×(n−i+1) .Li−1−−−→ D1×m

↑ .Wi ↑ .Im
D1×(n−i+1) .Li−1−−−→ D1×m

↑ .Hi ↑ .Im
D1×(n−i) .Li−→ D1×m

=⇒ Li X = (Hi Wi Yi−1 G
′
i )︸ ︷︷ ︸

Yi∈GLn−i (D)

Li−1, Y−1i = H ′i Y
−1
i−1W

−1
i Gi .
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Procedure to remove zero rows: matrix computations

� We decompose Yi−1 and its inverse Y−1i−1 by blocks as follows:

Yi−1 =

 Y11

Y21

Y31

← q + p′

← p + q′ − i
← 1

q + p′ 1
↓ ↓

Y−1i−1 =
(
Y ′11 Y ′12 Y ′13

)
↑

p + q′ − i

� As sr(D) ≤ p + q′ − s, the key lemma implies that there exist c ∈ D,

u ∈ Dp+q′−i , v ∈ D1×(p+q′−i) such that, if k = q + p′ − (i − 1), then

(
c (Y ′11)k. v

)( (Y11).k
(Y21).k + u (Y31)k

)
= 1.

� Assume c ∈ D, u ∈ Dp+q′−i , v ∈ D1×(p+q′−i) have been computed.
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Procedure to remove zero rows: matrix computations

� Wi =

Iq+p′ 0 0
0 Ip+q′−i u
0 0 1

 ∈ GLn−i+1(D)  commuting square diagram:

D1×(n−i+1) .Li−1−−−→ D1×m

.W−1
i ↓↑ .Wi .Im ↓↑ .Im

D1×(n−i+1) .Li−1−−−→ D1×m

� Let ˜̀
i =

(
c (Y ′11)k. v

)
, `i =

(
c (Y ′11)k. v 0

)
, Fi =

(
Y11

Y21 + u Y31

)
.
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Procedure to remove zero rows: matrix computations

� Gi =

(
In−i − (Fi ).k ˜̀

i

˜̀
i

)
, Hi =

(
In−i − (Fi ).k ˜̀

i (Fi ).k
)

satisfy Hi Gi = In−i

and the following square diagrams commutes:

D1×(n−i+1) .Li−1−−−→ D1×m

↑ .Hi ↑ .Im
D1×(n−i) .Li−→ D1×m

� G ′i =
(
In−i+1 − (f n−i+1

k )T `i Wi Yi−1
)Ik−1 0

0 0
0 Ip+q′

, H ′i =

(
Ik−1 0 0

0 0 Ip+q′

)
,

satisfy H ′i G
′
i = In−i and the following square diagrams commutes:

D1×(n−i) .L′i−→ D1×m

↑ .G ′i ↑ .Im
D1×(n−i+1)

.L′i−1−−−→ D1×m
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Procedure to remove zero rows: matrix computations
� Yi = Hi Wi Yi−1 G

′
i ∈ GLn−i (D) with inverse Y−1i = H ′i Y

−1
i−1W

−1
i Gi .

� The following commutative exact diagram holds

0 0 0
↓ ↓ ↓

D1×(n−i) .Li−−→ D1×m
π⊕ 0p′−−−−−→ M −→ 0

↓ .Yi ↓ .X ↓ f

D1×(n−i)
.L′i−−→ D1×m 0p ⊕π′−−−−−→M′ −→ 0

↓ ↓ ↓
0 0 0

and Li and L′i are equivalent matrices.

� Matrices given explicitly in terms of those of the previous equivalence.

Problem reduced to computing c ∈ D, u ∈ Dp+q′−i , v ∈ D1×(p+q′−i) s.t.:

(
c (Y ′11)k. v

)( (Y11).k
(Y21).k + u (Y31)k

)
= 1.
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Example in the theory of 2D linear elasticity

� We have q = 3, p = 2, q′ = 6, and p′ = 3 so that n = 14 and m = 5.

� We have q + p′ = 6 ≤ p + q′ = 8, and sr(Q[∂1, ∂2]) = 3.

� The integer s has to satisfy:

s ≤ min(p + q′, q + p′) = 6, sr(D) ≤ max(p + q′ − s, q + p′ − s) = 8− s,

=⇒ We can remove s = 5 zero rows.
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Example in the theory of 2D linear elasticity

� To remove the first zero row, we are reduced to solving:

(
c
(
0 0 0 0 0 0

)
v
)





0

0

0

0

0

1




0

1

0

0

0

−∂1

−∂2



+ 0 u



= 1,

� A solution is given by c = 0, v = (0 1 0 0 0 0 0), and u = (0 0 0 0 0 0 0)T
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Example in the theory of 2D linear elasticity

� From the above formulas, we get Y1 ∈ GL13(D) s.t. L′1 = Y−11 L′1 X .

� Applying recursion, we compute Yi ∈ GL14−i (D), i = 2, . . . , 5 so that
we finally get:

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 ∂1 0 0

0 0 ∂2 −1 0

0 0 0 ∂1 0

0 0 0 1 ∂1

0 0 0 0 ∂2

0 0 0 ∂2 0


︸ ︷︷ ︸

L′5

= Y−15



∂1 0 0 0 0
1
2 ∂2

1
2 ∂1 0 0 0

0 ∂2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

L5

X .
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Procedure to remove identity blocks: general description
� Hyp.: we have computed Ys,j−1 ∈ GLn−s−j+1(D), Xj−1 ∈ GLm−j+1(D)

satisfying L′s,j−1 = Y−1s,j−1 Ls,j−1 Xj−1.

D1×(n−s−j) .L′s,j−−→ D1×(m−j)

↑ .G ′1,j ↑ .G ′2,j
D1×(n−s−j+1)

.L′s,j−1−−−−→ D1×(m−j+1)

↑ .Ys,j−1 ↑ .Xj−1

D1×(n−s−j+1) .Ls,j−1−−−−→ D1×(m−j+1)

↑ .W1,j ↑ .W2,j

D1×(n−s−j+1) .Ls,j−1−−−−→ D1×(m−j+1)

↑ .H1,j ↑ .H2,j

D1×(n−s−j) .Ls,j−−→ D1×(m−j)

=⇒ Ls,j (H2,j W2,j Xj−1 G
′
2,j)︸ ︷︷ ︸

Xj∈GLm−j (D)

= (H1,j W1,j Ys,j−1 G
′
1,j)︸ ︷︷ ︸

Ys,j∈GLn−s−i (D)

L′s,j .
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Procedure to remove identity blocks: matrix computations

� The process is the same as for removing zero rows:

1 We decompose Ys,j−1, Xj−1, and their inverses by blocks;

2 The key lemma and the assumption sr(D) ≤ p′ − r implies that there

exist c ∈ D, u ∈ Dp′−j , and v ∈ D1×(p′−j) s.t., if k2 = p − j + 1,

(
c (X ′11)k2. v

)( (X11).k2
(X21).k2 + u (X31)k2

)
= 1;

3 Explicit formulas for all the matrices are then obtained in terms of a
solution c ∈ D, u ∈ Dp′−j , and v ∈ D1×(p′−j).
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Example in the theory of 2D linear elasticity

� We have q = 3, p = 2, q′ = 6, and p′ = 3 so that n = 14 and m = 5.

� We have sr(Q[∂1, ∂2]) = 3.

� The positive integer r has to satisfy:

r ≤ min(p, p′) = 2, sr(D) ≤ max(p − r , p′ − r) = 3− r ,

=⇒ No positive integer r satisfies the hypothesis of Warfield’s theorem.

� But, in the above process, the condition on r is just a sufficient condition

for
(
c (X ′11)k2. v

)( (X11).k2
(X21).k2 + u (X31)k2

)
= 1 to admit a solution!

⇒ In some cases, such c , u, and v could exist without the hypothesis on r .
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Example in the theory of 2D linear elasticity

� Here, to remove the first identity block, we are reduced to solving:

(
c
(

0 0
)

v
) 

(
0
1

)
(

0
0

)
− u

 = 1.

� Even if the hypothesis of Warfield’s theorem is not fulfilled, a solution is
clearly given by c = 0, v = (0 − 1), and u = (0 1)T .

� This allows to remove a first identity block!
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Example in the theory of 2D linear elasticity

� From the explicit formulas, we get X1 ∈ GL4(D) and Y5,1 ∈ GL8(D) so
that we have the equivalence of matrices L′5,1 = Y−15,1 L′5,1 X1.

� Similarly, we can remove a second identity block and we finally get:

0 0 0

∂1 0 0

∂2 −1 0

0 ∂1 0

0 1 ∂1

0 0 ∂2

0 ∂2 0


︸ ︷︷ ︸

L′5,2

= Y−15,2



∂1 0 0

1
2 ∂2

1
2 ∂1 0

0 ∂2 0

0 0 1

0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

L5,2

X2.
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Summary

� We have given constructive versions of Fitting and Warfield’s theorems.

� Explicit formulas for all unimodular matrices providing the equivalences
are given in terms of the matrices defining the D-module isomorphism.

� Concerning Warfield’s theorem, the method relies on the resolution of a
“stable rank” equation.

� We have an implementation of all the algorithms in Maple. It uses
heuristics for solving the “stable rank” equations which allow to treat
many examples.

Thank you for your attention!
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