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Linear systems and finitely presented left D-modules
¢ D ring of functional operators, R € D9*P  and F a left D-module

o Consider the linear system kerr(R.) = {n € FP | Rn = 0}.
o We associate the following finitely presented left D-module:
M = D*# /(D7 R),

given by the finite presentation:

ptxd By pre oM — o,
A=y hg) — AR

o Malgrange's isomorphism: ker z(R.) = homp(M, F)

o Algebraic analysis: the linear system kerz(R.) can be studied by means

of the finitely presented left D-module M.
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Example in the theory of linear elasticity (Pommaret’'01)

01& =0, 011=0, 0@ — (=0,
0 (S)S 3(h&+01&)=0, (5) 01¢=0, A+ =0,
026 = 0. 023=0, 0G=0.
© We consider the ring D = Q[01, 92] and we have
RI
o0 0 0
_ R &» -1 0
0
o & / 0 o 0 C1
(5)<:> 582 581 & —0,(5)<:> 0 1 (| =0.
(92 1 43
0 0 o
0 0, 0

o We associate M = D**2/(DY3 R) and M’ = D*3/(D**® R').
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Two theorems about isomorphisms and equivalences

Theorem (Fitting, 1936)

Two matrices R € D9%P and R' € D9 %P’ presenting isomorphic left
D-modules can be inflated with blocks of 0 and | to get equivalent
matrices presenting the same left D-modules.

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

s<min(p+4q,q+p), st(D)<max(p+q —s,q+p —5s),
r< min(p7 p/)7 SI‘(D) < max(p - I’,P/ - I’),

then we can remove s blocks of zeros and r blocks of identity.

¢ Goal of the talk: give constructive versions of both theorems
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Example in the theory of linear elasticity
o We will prove that M = D'*2/(D1*3 R) =2 M’ = D1*3/(D*® R').

o Constructive version of Fitting's theorem: compute X € GLs(D) and
Y € GL14(D) such that:

0 0| o0 0 0 81 0o |o o0 o0
0o oo 0o o0 1o forlo o o0
0 0| o0 0 0 0 9 |0 0 0
0 0] o 0 0 0 0 1 0 0O
0 0| o0 0 0 0 o o 1 o
0 o] o 0 0 0 0o |0 o0 1
10\0 0 0 _y-t 0 0‘000 X,
0o 1] 0 0 0 0 0 |0 o0 o0
0 0]a; 0 0 0 0 |0 0 o
0 0]a -1 o0 0 0o |0 o0 o
0 0] 0 4 o0 0 0o |0 0 o
0 0| o0 1 o1 0 0 o o0 o0
0 0J0 0 & 0 0 |o o0 o0
0 0|0 & o 0 0o [0 0 0O
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Example in the theory of linear elasticity

© Constructive version of Warfield's theorem (slight generalization):

compute X’ € GL3(D) and Y’ € GL7(D) such that:

0 0 0 o)

d 0 0 10

9 -1 0

0 9 0 | =Y

0 1 & 0

0 0 o 0

0 9 O 0
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Part |

Definition of isomorphic finitely presented
left D-modules in terms of matrix
equalities
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Homomorphisms in terms of matrix equality
o Let D be a ring of functional operators.
o Let Re DI*P, R e DY*P be two matrices.

© We have the following commutative exact diagram:

ptxa K pr T,y 50

1@ P Lf
pixa Ry pixe Ty .
3f:M—> M < 3P e DPP Qe DI such that:
RP=QR.

Moreover, we have f(m()\)) = 7/(A P), for all A € D**P.
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Isomorphisms in terms of matrix equalities

o f € homp(M, M’) given by P and Q such that RP = QR'.

o f eisop(M, M') if and only if there exist P’ € DP'*P, Q' € D9 %4,
Z € DP*9 and Z' € DP'*9 satisfying the following relations:

RP=QR, PP+ZR=1I,, PP+ZR =I,.
Then, there exist Z, € D9*" and Z} € D> such that:
QA+RZ+2ZR=13, QQ+RZ+ZRy= Iy,

where kerp(.R) = D" R; and kerp(.R') = D" R},
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Implementations

o All the matrices appearing in the relations defining (iso)morphisms can
be computed from R and R’ using (non-commutative) Grébner basis
calculations.

© Implementations:

@ Maple package OREMORPHISMS (C.Q.) based on OREMODULES
(Chyzak, Q., Robertz);

@ Mathematica package OREALGEBRAICANALYSIS (C., Q., Ténso)
based on HOLONOMICFUNCTIONS (Koutschan);

© CapAndHomalg (Barakat et al).
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Example in the theory of linear elasticity
© We have R P = Q R" with:

i 0 0
o o0 0

10
PP=| 8 o |, o= o ° 0
o 2 0

0o 1
o o 1

0 20, =01

o This proves that M = D2 /(D3 R) = M’ = D3 /(D> R').
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Part 1l

Constructive version of Fitting's theorem
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Statement of the problem
o Let M = DY*P /(D9 R) and M’ = D'*P'/(D'*9" R').
¢ Assume that M = M’

Theorem (Fitting, 1936)

Two matrices R € D9*P and R’ € D9 %P presenting isomorphic left
D-modules can be inflated with blocks of 0 and | to get equivalent
matrices presenting the same left D-modules.

¢ Goal: Compute inflations L and L’ of R and R’ with blocks of 0 and /
and two unimodular matrices X and Y such that:

@ L and L’ respectively define a finite presentation of M and M’;

e [ and L’ are equivalent matrices, i.e., we have L' = Y™1 L X.

o We give explicit formulas for X and Y in terms of the matrices defining
the isomorphism.
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Explicit Fitting's theorem

n=q+p+p+dq

o Let and define the matrices:

m=p+p
o
I P I,— PP
X=( " € GLn(D), Xt=[ "
( _Pl Ip’ _ P/ P ) m( ) ( P/
b, 0 R Q
0 Iy —P' z'
Y = i € GL,(D),
-Z P 0 PZ-2ZQ (D)
-Q -R 0 Z)R)
with inverse given by
LRy 0 —-R —-@Q
ya_| PZ-2@ o P -Z
z -P I, 0
Q R0 Iy
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Explicit Fitting's theorem

R 0 0 0
0 Iy 0 0

olet L= Pl epmm r = e D"™<m,
0 0 I, 0
0 0 0 R

¢ The following commutative exact diagram holds:

0 0 0
4 { 4

pixn L puxm  TE%

Y X 1 f

pixn S pixm %@
4 4 +
0 0 0

and L and L’ are equivalent matrices, i.e.,
0 O R 0
0 0 | |0 k|,
I, 0 0 o0
0 R 0 0
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Example in the theory of 2D linear elasticity

o We get

—y!

16 /36
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Example in the theory of 2D linear elasticity

o X € GLs(D) and Y € GL14(D) are given by:

—_—
o - o o
o o o ~
~
IOOJO
o - o o
~
101_.%
/|\

Il

x

2]

02

— 82

781
782

01

_62

_61

_31
_62

2]

— 82

_62

2]

—20,
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Part |l

Constructive version of Warfield's theorem
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Statement of the problem
o Let M = D1*P/(DY*9 R) = M' = DY*F' /(D9 R).

o Assume that L’ = Y1 L X as before (Fitting's theorem).

Theorem (Warfield, 1978)

If two positive integers s and r satisfy

s<min(p+4q,q+p), st(D)<max(p+q —s,q+p —5s),
r< min(pa pl)a SI‘(D) < max(p - r7p, - r)a

then we can remove s blocks of zeros and r blocks of identity.

o Goal: Compute X; € GLp,—,(D) and Ys, € GL,—s_,(D) such that:

0 0 R 0
IP—I’ 0] = Ysjrl 0 Ip’ —r | X
0 FK 0 0
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Stable rank of a ring D

Definitions (e.g., McConnell & Robson)

@ u € D" is unimodular if 3v € D" such that vu = 1.

Q@ u=(u1,...,u,)" € D"is stable if 3dy,...,d,_1 € D such that
(up +diup, ..., up1+dp_1u,)T € D1 is unimodular.

© An integer r is said to be in the stable range of D if Vn > r, a
unimodular vector u € D" is stable.

© The stable rank sr(D) of D is the smallest positive integer that is in
the stable range of D. If no such integer exists, then sr(D) = +oo.

o Examples:
Q If D is a principal domain, then sr(D) > 2;
@ Vn>1, we have sr(Q[xy, ..., x,]) = n+ 1 (Vasershtein'71);
Q sr(An(k)) =2 and sr(Bn(k)) = 2 (Stafford's theorem - Stafford'78).
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A key result based on sr(D)

Lemma

Let D be a ring and n, m two integers such that sr(D) < m.
Let u e D"+l be a unimodular column vector such that we have:

Un
vu= (v,, vm+1) um | =1,
uy

where v, € D", vy, 1 € DMy e D"y, € D™, up € D.
Then, there exist ¢; € D, i, € D™, ¥y, € D™ such that we have:

- Un _
(c1 Vn vm) (Um 4G u1) =1.

o No general algorithm for computing ¢, i, and Vp, in any ring D.

o But algorithms and heuristics are implemented for some particular rings
D (as for instance Weyl algebras) and allow to treat examples.
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An iterative process
o Starting point: X € GLy,(D) and Y € GL,(D) such that L' = Y1 L X.

© We assume that s and r satisfy the hypothesis of Warfield's theorem.

© Remove s zeros rows: From Yj := Y, we compute recursively matrices
Y1,..., Ys such that: Vi=1,...,s,

0 0 R 0
Y,eGL,—i(D), |, o|=Y"']0 Iy|X.
0 R 0 0
L/eDlr=nxm L;eDtr=i)xm

¢ Remove r identity blocks: From Y, := Y5 and Xp := X, we compute
recursively Ys1,...,Ys, and Xq,..., X, such that: Vj =1,...,r,

0 0 R 0
Yej € GL, s (D), X; € GLpj(D), [l O | =Y " (0 lyj| X
0 R 0

L. €Dln—s=i)x(m=)) L, j€Dn=s—)x (m=))
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Procedure to remove zero rows: general description
o Hyp.: we have computed Yj_; € GL,_i11(D) s.t. Li_; = Y] Li_1 X.

1

p1x(n—i) i plxm
1.6 Tt
pix(n—i+1) h plxm
T .Y T X
p1x(n—i+1) i> plxm
T.w; T
pDlx(n—i+1) i> pixm
1 Hi 1ol
pix(n—i) Lo pixm

1

= LiX=(HW,Yi_1G)) L.y, Y7 =H YW G
~—
Y;€GL,_;(D)
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Procedure to remove zero rows: matrix computations

o We decompose Y;_1 and its inverse Y,:11 by blocks as follows:

q+rp 1
Yii \ < q+p \ \
Yio1 = Yo1 —p+q —i Y,:11 = ( Y1/1 Y1’2 Y1/3 )
Y31 —1 T
pt+q —i

o As sr(D) < p+ ¢ — s, the key lemma implies that there exist ¢ € D,
ue DPHI =1y e DY) such that, if k =g+ p’ — (i — 1), then

(e v) <(Y21).(kyr31?Y31)k) -t

o Assume c € D, u € DP9 ~i v € D1*(P+d'=1) have been computed.
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Procedure to remove zero rows: matrix computations

o W: = 0 lprg—i u| € GL,_j:+1(D) ~» commuting square diagram:
0 0 1
pix(n—i+1) i pixm
W w Am 31 A

D1x(n—i+1) 'L"—l} pixm

= Y11
o Let E,‘ = (C(Ylll)k, V) R e,' = (C(Ylll)k. v 0) R Fi = (Y21 Ly Y31) .

Thomas Cluzeau (Univ. Limoges, XLIM) Isomorphisms and equivalences June 1, 2021 25/36



Procedure to remove zero rows: matrix computations
o G = <l"i _é‘Fi)'k&), H; = (/,,_,' —(Fi) .« Zi (F,)k) satisty H; G; = I—;

1

and the following square diagrams commutes:

pix(n—i+1) Limio pisxm
1T .H; T

pix(n—i) cLio pixm

_ fe1 0 ki 00
o G,'/ = (In—i+1 - (fkn_l+1)T€i Wi Y"—l) 0 0 ' H"/ - ( kal 0 > 7
0 iy p+q’

satisfy H! G/ = I,_; and the following square diagrams commutes:

p1x(n—i) i) plxm

T.6G! , T

p1x(n—i+1) Lica pixm
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Procedure to remove zero rows: matrix computations
o Yi=H; W; Yi_1 G/ € GL,_;(D) with inverse Y; ' = H/ Y, 1 W1 G,.

¢ The following commutative exact diagram holds

0 0 0
+ + +
i : @0
p1x(n—i) Li plxm Y0 M—>0
1Y 4. X 1 f
/ ’
p1x(n—=i) 'Li, plxm p &~ M — o0
+ + 4
0 0 0

and L; and L are equivalent matrices.

< Matrices given explicitly in terms of those of the previous equivalence.

Problem reduced to computing ¢ € D, u € DPTd i v € DY*(P+d'=i) gt
Yi1)
Y{ (Yi1).s ) =1.
CCATY P L Y
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Example in the theory of 2D linear elasticity

oWe have q=3,p=2,q =6, and p’ =3 so that n =14 and m = 5.

o We have g+ p' =6 < p+ ¢’ =8, and sr(Q[0;, 5]) = 3.

© The integer s has to satisfy:

s<min(p+4q,9+p)=6, st (D) <max(p+q —s,g+p —s)=8—s,

— We can remove s = 5 zero rows.
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Example in the theory of 2D linear elasticity

© To remove the first zero row, we are reduced to solving:

0
0

o o o

¢ A solution is given by ¢ =0, v=(0100000), and u=(0000000)"
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Example in the theory of 2D linear elasticity

o From the above formulas, we get Y; € GLi3(D) s.t. L = Y 1L} X.

o Applying recursion, we compute Y; € GL14 (D), i = 2,...,5 so that
we finally get:

00/0 0 O d 0 ]0 00
1 0[0 0 0 30, 30110 0 0
01/0 0 © 0 9 |0 00
0 0[dr 0 O 0 0 J1 00
00[/d -1 0 [=Y'[ o 0o 10]X
00/0 & O 0 0 [0 01
0 0[0 1 & 0 0o o000
00/0 0 0 0 0 ]000O
0 0[0 & O 0 0 J0oo00O
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Procedure to remove identity blocks: general description
o Hyp.: we have computed Ys ;1 € GLp—s_j11(D), Xj—1 € GLm—j+1(D)
satisfying L} ; ;= Yty Lejo1 Xjo1.

s,j—1
. L .
p1x(n—s—j) TN p1x(m—j)
.6, t.,
pix(n—s—j+1) Eimt plx(m—jt1)
T .Y T X1
pix(n—s—j+1) Lzl pix(m—j+1)
T Wy T Wy
pix(n—s—j+1) Lizio pix(m-jt1)
T Hyj T Haj
pix(n—s—j)  tsio pix(m-j)

= Lsj (HojWajXj_1 Gy ) = (Hij Whj Y1 Gij) Ly

X;€GLp,_;(D) Y. j€GL,_s_i(D)

Thomas Cluzeau (Univ. Limoges, XLIM) Isomorphisms and equivalences June 1, 2021 31/36



Procedure to remove identity blocks: matrix computations

© The process is the same as for removing zero rows:

© We decompose Y5 ;_1, Xj_1, and their inverses by blocks;

@ The key lemma and the assumption sr(D) < p’ — r implies that there
exist c€ D, ue DP~J, and v € DYX(P'=)) st if ky = p—j+1,

, (Xll).kz =1
(C (Xi1)k. V) <(X21)Ak2 + U(X31)k2> -

© Explicit formulas for all the matrices are then obtained in terms of a
solution c € D, u € DP~J, and v € DYX(P'=)),

Thomas Cluzeau (Univ. Limoges, XLIM) Isomorphisms and equivalences June 1, 2021 32/36



Example in the theory of 2D linear elasticity
oWehave q=3,p=2,9 =6, and p’ =3 so that n =14 and m = 5.
© We have sr(Q[0y, 02]) = 3.
© The positive integer r has to satisfy:
r<min(p,p') =2, st(D)<max(p—r,p—r)=3—r,

= No positive integer r satisfies the hypothesis of Warfield's theorem.
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Example in the theory of 2D linear elasticity

oWehave q=3,p=2,9 =6, and p’ =3 so that n =14 and m = 5.
© We have sr(Q[0y, 02]) = 3.
© The positive integer r has to satisfy:

r<min(p,p') =2, st(D)<max(p—r,p—r)=3—r,

= No positive integer r satisfies the hypothesis of Warfield's theorem.

¢ But, in the above process, the condition on r is just a sufficient condition

/ X11) .k : :
for (c(X{1)k. V) <(X21),£2 —1&-1)uk(X31)k2> =1 to admit a solution!

= In some cases, such ¢, u, and v could exist without the hypothesis on r.
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Example in the theory of 2D linear elasticity

© Here, to remove the first identity block, we are reduced to solving:

(1)
1
(c ( 00 ) v) 0 =1.
0 —u
¢ Even if the hypothesis of Warfield's theorem is not fulfilled, a solution is

clearly given by c =0, v=(0 —1),andu=(0 1)7.

¢ This allows to remove a first identity block!
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Example in the theory of 2D linear elasticity

o From the explicit formulas, we get X; € GL4(D) and Y51 € GLg(D) so
that we have the equivalence of matrices Ly ; = Y5j11 L5, X1

© Similarly, we can remove a second identity block and we finally get:

00 0 o1 0 |0
o 0 0 30 101|0
8 -1 0 0 & |0
0 0 0 |=Y| 0 0|1 ]X.
0 1 & 0 0 |0
0 0 o 0 0|0
0 & 0 0 o0 o
L, Ls»
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Summary

© We have given constructive versions of Fitting and Warfield's theorems.

o Explicit formulas for all unimodular matrices providing the equivalences
are given in terms of the matrices defining the D-module isomorphism.

< Concerning Warfield's theorem, the method relies on the resolution of a
“stable rank” equation.

o We have an implementation of all the algorithms in Maple. It uses

heuristics for solving the “stable rank” equations which allow to treat
many examples.
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Summary

© We have given constructive versions of Fitting and Warfield's theorems.

o Explicit formulas for all unimodular matrices providing the equivalences
are given in terms of the matrices defining the D-module isomorphism.

< Concerning Warfield's theorem, the method relies on the resolution of a
“stable rank” equation.

o We have an implementation of all the algorithms in Maple. It uses
heuristics for solving the “stable rank” equations which allow to treat
many examples.

Thank you for your attention!
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