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Standard zeta function

e The standard Hurwitz (Riemann) zeta function

=1
a(8) =y —, 0, R 1
Cals) ; Grap *” e(s) >

converges absolutely for Re(s) > 1
meromorphically extendable to C\ {1}

single pole at 1 with residue Res({,(s),s=1) =1
for a = 1: the Riemann zeta function



'Geometric generalizations' - fractal zeta functions in

the sense of Lapidus

o L:={l;: jeN}
a disjoint union of intervals on the real line with lengths /;

(1) The geometric zeta function of a fractal string (Lapidus,
Frankenhuijsen, 2000)

o0
Ce(s) = ij, s € C s.t. the sum converges absolutely
j=1

* U= % standard zeta function



Generalizations for arbitrary sets

(2) The distance zeta function of a bounded set A C RY
Cals) ::/ d(z, AN da
As

e ¢ > 0 inessential (up to a holomorphic function)

(3) The tube zeta function of a bounded set A C RY:
e the tube function of A:

g+ Va(e) :=|A:| (the Lebesgue measure)

o Va(e) ~ MeN=50 ¢ — 0 = dimp(A) = 5o, M*°(A) = M.

s
Ca(s) == / =N, () dt,
0
Re(s) > dimp(A), § > 0 inessential

(Lapidus, Frankenhuijsen 2000, 2006; Lapidus, Radunovi¢,
Zubrini¢, 2017)
I



For fractal strings, all three equal up to a holomorphic
function

L= A::{aj: jGNo}, Ej =aj-1 — aj

The functional equations on domains of definition (up to

holomorphic functions):
2N—s

® Cals) = ==—Cc(s),
o (a(s) = x=Ca(s), Re(s) > dimp(A).




Definition
Let
o ACRN bounded,
® Ca(s) admits the meromorphic extension to whole C.

The set of all poles is called the set of complex dimensions of A,
Q(A).

@ (4(s) holomorphic for Re(s) > dimp(A),
e simple pole at s = dimp(A).

Complex dimensions (and their residues i.e. principal parts) talk
about the geometry of the set! Similarly as the tube function!



Box dimension - the 'first’ complex dimension of A ¢ RV

The box dimension of a set (type of fractal dimension)
e A C RN bounded
@ ¢ >0, Va(e) := | A.| the Lebesque measure of the
e-neighborhood (the so-called tube-function)
e For s € [0, N], consider (or: liminf, lim sup)
. Vale)
ilgcl) gN—s

€ [0, o0],

Slika: s — lim.0 %), s € [0, N].



the moment of jump sy = the box dimension, dimp(A) = s0.

the value at sp = Minkowski content, M(A).

o if Va(g) ~eo CeN7%0 = dimp(A) = s9, M(A) =C.

dimp(point) =2 -2 =0;
dimp(finite — length line) =2 —1 = 0;
dimp(A) =2 —0=2, |A] > 0.




Non-trivial examples: Orbits of local parabolic

diffeomorphisms (= germs) on the real line R

o (attracting) parabolic germ
f(z) =z —az**t 4+ ... € Diff(Ry,0),a >0, k€N

e (attracting) hyperbolic germ f(z) =Xz +...,0< A <1
aj ~ N, j— occ.
Orbit of f with initial point zg € (R4, 0):
Of(xo) := {an == [T (x0) : n € Np}



Box dimension and Minkowski content of orbits

Zubrini¢, Zupanovi¢ 2005, MRZ 2012
@ a parabolic orbit of multiplicity k

1 k+1 1

Vor (o) () ~ (2/a)F+1 e +o(e* 1), £ = 0,

dimp(Of (20)) =1 = 1. MO (20) = (2/a)77 K Z L

@ a hyperbolic orbit

Vors(z)(€) ~ a(A) -e(—loge) + o(e(—loge)), € — 0,
dimp(Of (20)) =1 -1 =0, M(Of(0)) = +o0.

Later: R [2013]

x formal class of f using asymptotic expansion of function
€ Vor(z)(€), ase =0

x further complex dimensions needed



Example 2 (The complex dimensions of the ternary Cantor set,

LRZ 2017)

* viewed as a fractal string, the order of intervals not important
Le, A

Cee(8) = X521 65 = 3020 2 (1) = 3, I35l <1

@ holomorphic for Re(s) > logy 3 = dimp C

@ unique meromorphic extension to C by the above formula
with poles:

2km
QC) = {wg :==logz 2+ z@, keZ}.

Example 3 (The tube function of the Cantor set (LRZ 2017))

Ve(e) = e %832 (G(—loge) + o(1))), € — 0,

G a nonconstant periodic function.

v




A conjecture (LRZ):
Strong oscillations in the first term indication of self-similarity;
non-real complex dimensions;

possible definition of fractality of a set as possessing non-real
complex dimensions?



Complex dimensions deduced from asymptotics of the tube
function of a set

(formally proven in LRZ, 2017)

* §~A the tube zeta function of set A C RY, meromorphically

extendable to C.
*xt = Va(t) = |A¢, t € (0,0), the tube function of A

@ Cals) = M(x 05)VA/1dN fo Va(t)ts—1=N gt
o Conversely,
tN

VA(t) 27rz

ME)(t) / Cals)tN =5 ds, t € (0.d).

T"... a vertical line at around s = ¢, ¢ > dimp A



* Heuristically, the residue theorem 'gives’ expansions of ¢ — V()
from poles and residues of (4:

*x e.g. Q4 = {wy, n € N} only first-order poles

1 tN=s
() vt = o [ Gt de =

1 tN-—w -
= — —R ONTM)y ¢+ 0, M €N.
o Z N o1 es(Ca,w) + O ), , €
weN A, Re(w)>—M

(in case of higher-order poles logarithmic terms in the expansion)




ldea of proof of (**) (LRZ)

e to get asymptotic remainder O(tN*+M), M € N, bounds
needed on zeta function along vertical lines Re(s) = —M,
M — oo

e so-called languidity bounds of (4(s) along vertical lines
S=o0+1T,as T — oo

@ pointwise asymptotics as long as bounds rational
ICa(o +im)| ~ 777, v > 0,7 — +00

@ polynomial bounds (v < 0) = only distributional
asymptotics (there exists some primitive of tube function
t Vf[lk]) that expands pointwise up to this term, but
differentiation of asymptotic expansions can be done just
distributionally!

° %EA(J +1i7), as T — +00, becomes rational for k

sufficiently big!
I



Relation to dynamical systems - 1-D orbits of germs seen

as fractal strings

o (attracting) parabolic germ
f(z) =2z —ax** 4+ ... € Diff(R;,0), a >0, k €N

—1/k kLl
a; ~ ] /7£]N] ko, g — 00,

e (attracting) hyperbolic germ f(x) =Xz +...,0< A< 1

ajN)\j, ij)\j,j—>oo.

Ce, (o) 7 Y
JEN
« holomorphic for Re(s) > kiﬂ = dimp Of (z0)
* however, too coarse approximations for meromorphic
extensions - info on poles and residues lost
* notation: (z,, Cr, CNf
I



Precise computations tedious even in the simplest model

case of germs, k =1, p = 0 (MRR 2020)

* Model cases with residual invariant p = 0 and multiplicity k € N

% time-one maps of simple vector fields 2/ = —zF*1:
fol@) = Expat Ly T MM ke N
RAT) = BXP dz’ (14 kxk)V/k ’ ’



Heuristical proof in the simplest model case k =1, p =0

Putting X := :co_l,

1 1 1 \!
E‘j: . . = 7 2" 1+ - 9
G+X)G+1+X) (+X) j+X
bt (1) -
TG+ X)* J+X B
-3 () gex
_m:O m ) (j+ X)2s+m’

Heuristically (formal change of order of summation),

() =367~ X (e tm. @
=0

m=0

Complex dimensions: w,, := 177”, n € Ny, with residues:

Res(Cz;, ,wn) = (?1) Zero residue for n odd.



What to do in the case p # 0 or even non-model case?

Arbitrary parabolic germ

f(z) =z — az®* 4 o(zF1) € Diff (R, 0)

Theorem B (MRR 2020, Complex dimensions for arbitrary

parabolic orbits)
f € Diff(R4,0), of formal class (k,p), k € N, p € R.

(1) The distance zeta function (¢(s) can be meromorphically
extended to C.




Theorem B
(2) For s € Wy :={s > 1—%}, M e N:

k
Gs) =1 — ) Y —— g (1 (Bl Gy
m=1S — (1 — kﬂ—i-l)
M-1 L]+l Lo
+(1 —s) (_1) p! m,p( 0) —l—g(s)’

m=k+2 p=0 (s -(1- kﬂﬂ)y+1

g(s) holomorphic in Wyy.

x the coefficients in principal parts of poles real, with dependence on x,
as noted!

* related to the coefficients of the asymptotic expansion of the tube
function of the orbit!

* new wrt model: higher-order poles correspond to logarithmic terms
in the asymptotic expansion of the tube function due to p # 0



Hyperbolic orbits

* Of(l’o) = {(E())\n T n e NQ},
* ﬁf = {fj = foj(fl,‘()) — fo(j+1)(l‘0) = ZL‘o(l — )\))\J ] S No},

*
21—3 &

G (s) = 21758 - (1= A)° 1

S 1— X8’

s L=
J=0

* extends meromorphically from {s € C: Re(s) > 0} to C:
double pole sp = 0 and the simple poles
2km

= —1, k€ Z.
Sk log)\l, S

2e
-1 H(logy ————) -
log )\E( 0g¢) + ( 98 zo(1 — A)) =

H :]0,+00) — R a 1-periodic bounded function

Vile) = —



Generalized asymptotic expansion of the tube function of

orbits € — Vi (¢)

f(x) =z — ax®*! 4 o(z**1) € Diff(R,0), a > 0, arbitrary
parabolic germ

'Problem’ noted in (R, 2014), (MRRZ, 2019):
(x) the tube function ¢ — V}(¢) fails to have a full asymptotic
expansion in power-logarithm scale,

. 2k+1
(%) oscillatory coefficient at order O(e*+1 ), ¢ — 0.



Generalized asymptotic expansion of the tube function of
orbits € — Vi (¢)

Proposition (MRR 2020)

A generalized asymptotic expansion of the tube function with
full description of oscillatory coefficients:

k+1 . m k—1
Vi(e) ~2F+1 g k+I -aﬁ—l—Zam‘am—f—Zp A -eloge + br41(xo)e+

m=2
2 LRI+ L2541 -
m_ BT
+ Z Z Cm,pe P+ logP e + Z Cok41,pE FFH1 logP e+
m=k+2 p=0 p=1
o LEl+t

~ 2k+1 ~ _m_
+ Pog1(G(re)) e ¥ + >~ 3" Qump(G(re)) -eF+T logPe, £ — 0T
m=2k+2 p=0

(%) € — T the so-called continuous critical time (MRRZ 2019)
(*) G : [0,400) — R 1-periodic, G(s) =1—s, s € (0,1), G(0) =0

(%) 152k+1 resp. Qm,p, polynomials whose coefficients in general depend on

coefficients of f and initial condition xg.




Two ways to 'regularize’ oscillatory coefficients:
@ the continuous-time tube function ('dynamical’ regularization)

@ the expansion of the tube function in the sense of Schwarz
distributions



The continuous tube function-a ‘dynamical smoothening’

of the expansion (MRRZ 2019)

Vi(e) = |Of (w0)c| = |T:| + |Ne| = 26 - ne + (£ (20) + 2¢), € >0
(the standard computation of the tube function: dividing into the
tail and the nucleus)
(%) € — n. the so-called discrete critical time 'separating’ tail

n n+1
and nucleus - jump function at ¢, = M — 0, n — o0.
(%) ne € N determined by two inequalities:

£ (o) — 7 (z0)| > 2,
|7 (z0) — £ (wo)| < 2e.




(%) the continuous critical time (MRRZ 2019) ¢ — 7.
- an analytic, dynamical 'approximation’ of n,
- relies on embedding of f as the time-one map in a flow
{ft: teR}:

fTE (:L'()) — fTS+1<$0) = 2e.
Note: n. = 7] +1, >0
More precisely, ne = 7. + G(7¢).

The continuous tube function ¢ — V()
Vi(e) = 2e7e + (f™(z0) + 2¢), € > 0.

(%) analytic in ¢ € (0,0)

(*) expansion coincides with the expansion of € — V(e) up to the
first oscillatory term

(%) full asymptotic expansion in a power-log scale, no oscillatory
coefficients!



Asymptotic expansion of the continuous tube function

f parabolic

Proposition (MRR 2020)

k
Z CeFAT 4

k—
2p

o LFl+1

+ brt1(zo)e + Z Z Cm,pski

+T logPe, e > 0.

m=k+2 p=0
(*) cak41,0 resp. cm,p, m > 2k+2, p=0,.
polynomials P2k+1 resp. Qm p

() only the coefficient b1 (xzo) depends on the initial condition xg

-eloge+

2]+ 1, are free coefficients of




Distributional expansion: distributional smoothening of the

tube function

f parabolic
Proposition (MRR 2020)

m

k
1 _ 1k 1 _m_ k—1
Vi(e) ~p 2F+Tq FH1 s E E+T 4+ 2p A -eloge + bp41(xo)et

k

m 4 [ 2k4L |1
2k L) Tl nia .

+ Z Z Cm,pe F+T logP e + Z Cok+1,p€ *TT logP e+
m=k+2 p=0 E

2k+1 © L1+

+dakt10(@o) € FF + Y D dmp(0)- e logPe, & — 07
m=2k+2 p=0

Here,
dant1,0(20) = [ Pant1(s)ds,
dm,p(T0) fOQm,p s)ds, m>2k+2, p=0,..., || +1,

the mean values of 1-periodic functions Paj11 0 G and Qm.p o G.
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Thank you for your attention!



